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ABSTRACT

S
hear fault-bend folding produces ramp anticlines with very distinctive shapes. They

are characterized by long, gentle backlimbs that dip less than the fault ramp, in

contrast with classical fault-bend folding. Backlimb dips and limb lengths increase

progressively with fault slip, by a combination of limb rotation and kink-band migration.

We summarize and apply two simple end-member theories of shear fault-bend folding

involving a weak décollement layer of finite thickness at the base of a ramp: (1) simple-

shear fault-bend folding, in which the layer undergoes an externally imposed bedding-

parallel simple shear with no basal fault, and (2) pure-shear fault-bend folding, in which

this basal layer slides above a basal fault and shortens and thickens above the ramp, with

no externally applied bed-parallel simple shear. In the limit of large displacement, the fold

geometry in pregrowth strata approaches the geometry of classical fault-bend folding,

with a backlimb dip that approaches the ramp dip. However, even in these cases, growth

strata may record the history of limb rotation that is characteristic of a shear fault-bend

fold heritage. We demonstrate that these theories are in agreement with well-imaged

seismic examples from the Nankai Trough and Cascadia accretionary wedges, which

show substantial shears (40–658) over stratigraphic intervals of a few hundred meters.

INTRODUCTION

There has been a long-standing intuition that thrust
sheets might undergo substantial internal deformation
even while they are displaced over their footwalls. This
intuition is exemplified by Figure 1, a diagram from
David Elliott (1976) showing a ramp anticline— what
might now be called a fault-bend fold— with significant
layer-parallel simple shear but negligible layer-parallel

shortening and thickening (pure shear) within the hang-
ing wall. Indeed, internal deformation in this drawing
dominates over basal fault slip in the total displacement
of the hanging wall, leading to an output fault slip that
exceeds the input fault slip, in spite of the fact that the
folding itself consumes slip.

Without discussing the mechanical motivation and
merits of this intuition of important internal deforma-
tion, suffice it to say that if such internal deformation
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exists, then the resulting shapes of ramp anticlines should
be sensitive to the proportions of fault slip, simple shear,
and pure shear. Because of this potential importance,
the original balanced theories of fault-bend and fault-
propagation folding explicitly included the possibility
of layer-parallel simple shear (Suppe, 1983; Suppe and
Medwedeff, 1990). Shear in fault-related folds has been
considered theoretically by many authors, including
Jamison (1987), Mitra and Namson (1989), Mitra (1990,
1992), Mosar andSuppe (1991), Poblet andMcClay (1996),
Storti and Poblet (1997), and Tamagawa et al. (1998).

In contrast with this substantial theoretical effort,
it is remarkable that most successful, rigorous applica-
tions of fault-related folding theory to well-documented
structures have involved no shear. Most cases in our ex-
perience match the no-shear theory rather closely when
the fault shape and fold shape are both well constrained
by data (one possible but not wholly convincing excep-
tion is given in Suppe, 1984). For example, Mitra (1992,
1988) points out that a well-constrained cross section
of the Pine Mountain thrust sheet in the southern Ap-
palachians deviates from classical no-shear fault-bend
folding by about 18 (with a ramp angle of 178, the no-
shear theory predicts a front-limb dip of 18.88, whereas
the observed frontlimb dip is 188). This discrepancy from
a perfect no-shear solution could result from a forward
shear in the frontlimb of about 58 (Figure 2), which would
be difficult to prove unequivocally. Mitra did not assign
this discrepancy to shear; he suggested that the small de-
viation might be an effect of dilation as a result of frac-
turing in the hanging wall.

Mitra’s Pine Mountain example is typical of many
well-constrained structures in fold-and-thrust belts in
which externally imposed layer-parallel shear has been
found to be second-order or absent, presumably reflect-
ing the fact that thrust faults are commonly much weaker
than their hanging walls (cf. Davis et al., 1983). Rather
than further document such examples of negligible shear,

it is the purpose of this chapter to show that there are
some widespread thrust-belt environments in which
hanging-wall shear is a very important process. In par-
ticular, we summarize simple end-member theories of
pure-shear and simple-shear fault-bend folding follow-
ing Suppe (2004). We then show that several well-imaged
seismic examples from the deep-water Nankai Trough
and Cascadia accretionary wedges agree closely with
shear fault-bend fold theory, with shears of 40–658over
stratigraphic intervals of a few hundred meters.

CLASSICAL FAULT-BEND
FOLDING WITH SIMPLE SHEAR

Fault-related fold theories involving layer-parallel
simple shear are most easily developed using the con-
cept of effective-cutoff and fault-bend angles. Effective-
cutoff and fault-bend angles are the angles that would
exist if we could apply the shear before folding. If we
use effective angles rather than the actual angles, then
classical no-shear fault-bend folding theory applies im-
mediately without modification. It’s that simple.

The concept of effective-cutoff angles is shown in
Figure 3. The figure shows a classical fault-bend fold with
an externally imposed simple shear, �e. If, in a thought
experiment, we apply this shear before folding, thereby
causing a displacement d of the top of the hanging wall,
then the fault-bend angle f will be modified to an ef-
fective fault-bend angle, �ef, and the initial cutoff angle �

FIGURE 1. There has been a long-standing intuition that
thrust sheets might undergo substantial internal defor-
mation even as they are displaced over their footwalls. This
schematic ramp anticline from Elliott (1976) exemplifies
this intuition by showing the possibility of substantial
internal deformation of the hanging wall, in addition
to that directly associated with fault displacement. The
contributions of layer-parallel simple shear to the displace-
ment of the top of the model (9 units) dominate over
the input fault slip (7 units), which leads to an output
fault slip (11 units) that is greater than the input, in spite
of the fact that folding consumes fault slip.

FIGURE 2. Anticlinal fault-bend folding at a ramp-flat
transition, including possible externally imposed layer-
parallel simple shear �e. The parameters for the inset
schematic fold are shown as the black square. Data for
the Pine Mountain thrust sheet from Mitra (1992) deviate
slightly from the no-shear theory (with a ramp angle of
178, the no-shear theory predicts a frontlimb dip of 18.88,
whereas the observed frontlimb dip is 188). This devia-
tion could result from a forward shear of about 58, but it
would be difficult to prove unequivocally. This example
is typical of many structures that show negligible shear.
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will be modified to an effective-cutoff angle, �ef. These
effective angles may be inserted directly into the no-
shear fault-bend fold equations (Suppe, 1983) to com-
pute the fold shape (�, �). Alternatively, the no-shear
fault-bend-folding graph (Figure 7 of Suppe, 1983) can
be employed directly to solve subsurface structural prob-
lems in cross section, using the effective angles. Varia-
tions on this concept of effective angles are used to de-
velop the simple-shear and pure-shear fault-bend-fold
theories summarized in this chapter. Figure 2 was com-
puted using effective angles.

SHEAR WITHIN A BASAL
DÉCOLLEMENT OF FINITE

THICKNESS

The two end-member types of fault-bend folding
considered here— pure-shear and simple-shear fault-
bend folding— involve distributed deformation of a
weak décollement layer of finite thickness at the base
of a fault ramp (Figure 4). In simple-shear fault-bend
folding, the décollement layer undergoes an externally
imposed bedding-parallel simple shear with no basal fault
slip. Thus the simple-shear end member has no bedding-
parallel fault— just a ramp with slip going to zero at its
base. In pure-shear fault-bend folding, this basal layer
slides above a basal fault and shortens parallel to bedding
and thickens perpendicular to bedding above the ramp,

with no externally imposed simple shear. In both cases,
the weak layer is overlain by normal strata that con-
serve layer thickness and bed length and undergo no
externally imposed shear.

These two end members correspond to the Type 2
and Type 3 fault-bend folds of Jordan and Noack (1992),
who presented some theory of the end members and their

FIGURE 3. Anticlinal fault-bend fold with an externally
applied simple shear �e. The correct balanced fold shape,
given the fault shape and shear, can be determined imme-
diately from classical no-shear fault bend folding, if we use
effective-cutoff �ef and fault-bend angles �ef , rather than the
ordinary angles � and �. The effective angles are those that
would exist if we could apply the shear before folding, as
shown in the lower figure. Figure 2 was computed using
effective angles.

FIGURE 4. Simple-shear and pure-shear fault-bend folds
characteristically show backlimb dips that are less than the
ramp dip, in contrast with classical no-shear fault-bend
folds. The two shear end members involve distributed de-
formation of a weak décollement layer of finite thickness
at the base of a fault ramp, shown in gray. In simple-shear
fault-bend folding, the décollement layer undergoes an ex-
ternally imposed bedding-parallel simple shear with no
basal fault slip. In pure-shear fault-bend folding, this basal
layer slides above a basal fault and shortens and thickens
above the ramp, with no externally applied simple shear.
The growth strata show that shear fault-bend folds un-
dergo a combination of progressive limb rotation and limb
lengthening by kink-band migration, whereas classical
fault-bend folds grow solely by kink-band migration.
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more complex intermediates, together with applications
involving the basal ductile décollement of the Jura. The
idea that simple-shear fault-bend folding involves a
basal ductile décollement (Type 2) was, according to Jor-
dan and Noack (1992), first introduced by Malavieille
and Ritz (1989) and Taboada et al. (1990), who were pri-
marily concerned with the strain paths within the ductile
layer. A simple-shear fault-bend folding theory also was
developed by Wayne Narr (personal communication,
1989). Early articulations of pure-shear fault-bend fold-
ing include those of Serra (1977) and Suter (1981). A
continuous gradation is theoretically possible between
a classical fault-bend folding end member and the pure-
shear and simple-shear end members, as discussed by
Jordan and Noack (1992). They also discussed hetero-
geneous shear. To our knowledge, the concepts of pure-
shear and simple-shear fault-bend folding have not
been widely applied. Therefore, this chapter summarizes

key elements of a more complete and accessible theory
after Suppe (2004) and shows that several well-imaged
structures agree well with the theory.

Pure-shear and simple-shear fault-bend folding both
produce a fold geometry for ramp anticlines that is nor-
mally quite different from classical fault-bend folding (Fig-
ure 4). They display backlimb dips that are shallower—
often much shallower— than the fault-ramp dips, yet
they may have a steep, narrow frontlimb at the top of
the ramp. In contrast, a classical no-shear fault-bend
fold stepping up from a décollement will have backlimb
dips that are equal to the ramp dip. With excellent seismic
data, these contrasting structural styles are easily differ-
entiated. For example, seismic images of fault-related
folds of the Cascadia subduction zone of western Can-
ada and the Nankai Trough of Japan (Figure 5) show long,
gentle backlimbs, steep fault ramps, and narrow, steep
frontlimbs that are quite unlike classical fault-bend folds.

FIGURE 5. These folds display the qualitative characteristics of shear fault-bend folds, including backlimbs that dip
much less than the fault dip and a steeply dipping narrow frontlimb. (a) Above is a time section of two ramp anticlines
from the Cascadia accretionary wedge, offshore western Canada (line 89-04 of Hyndman et al., 1994). (b) Below is a
depth-migrated section (h = v) of line NT62-8 from the Nankai Trough accretionary wedge, offshore Shikoku, Japan
(Moore et al. 1990, 1991). This line passes through Ocean Drilling Project sites ODP-808 and ODP-1174 (Moore et al.,
1991, 2001; Shipboard Scientific Party, 2001).
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Shear fault-bend folding is also capable of produc-
ing wedge structures, as shown in Figure 6. Identical
theories describe both the forward-thrust and wedge-
thrust structures, except that, in the simple-shear end
member, footwall shear deforms the fault ramp and re-
quires a thicker shear zone, as described in Appendix A.
Otherwise, the geometry and kinematics of the fold limbs
are identical between the forward-thrust andwedge-thrust
theories (compare Figures 4 and 6). Examples of wedge-
thrust shear fault-bend folds are known from the Niger
Delta (Connors et al., 1998) and from southern Taiwan
(J. Suppe, 2004, unpublished works), but are not consid-
ered in this chapter.

SHEAR FAULT-BEND
FOLDING THEORY

Simple-shear Fault-bend Folding

The concept of simple-shear fault-bend folding is
motivated by the idea that a weak décollement layer at
the base of a ramp— for example, an evaporite layer of
substantial thickness— may behave more like a shear
zone than like a discrete fault surface. The assumptions
of the simplest possible simple-shear fault-bend-fold-
ing theory are identical to classical fault-bend folding
(conserving layer thickness and bed length, with an-
gular fault bends and fold hinges), except that a décolle-
ment layer of finite thickness undergoes an externally
imposed homogeneous simple shear, �e. Under these
conditions, the backlimb dip, �b, is directly related to
the ramp dip, � , and the shear, �e, by

cot�e ¼
sin �b

2C

$
1

sin �b cot �þ 1 � cos �b

� �2

� 1

sin �b cot �þ 1 � cos �b

� �%
ð1Þ

where C = 0.5 is a parameter discussed below. A brief
derivation of this equation, which is also valid for pure-
shear fault-bend folding but with a different value of C,
is given in Appendix A, and is from J. Suppe (2004, un-
published works). A graph of this relationship is shown in
Figure 7, and a graph of the shape of a ramp anticline
as a function of shear is shown in Figure 8. Note in these
figures that, at very large shear— which, for example,
could correspond to having a very thin décollement—
the fold shape asymptotically approaches that of clas-
sical fault-bend-folding theory, with the back dip �b

equal to the fault dip �. The Pine Mountain thrust stud-
ied by Mitra (1988, 1992), reviewed above, lies near this
asymptotic classical solution.

Pure-shear Fault-bend Folding

The concept of pure-shear fault-bend folding (Fig-
ure 4) is motivated by the idea that the deformation of

FIGURE 6. Wedge-thrust
fault-bend folds show identi-
cal fold-limb geometries and
kinematics to their forward-
thrust equivalents (compare
Figures 4 and 6). The simple-
shear wedge case is more com-
plex because the footwall fault-
ramp is folded progressively
by a footwall shear that drives
strong migration of the anti-
clinal axial surface and limb
rotation, which accounts for
the different geometry of
growth strata.
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a weak décollement layer might be confined locally
to the rock volume in the immediate vicinity of a fault
ramp where stresses are high, in contrast with the simple-
shear end member in which shear enters the structure
from the hinterland, deforming an arbitrarily large vol-
ume of rock. The theory is also motivated by obser-
vations of structures in the field (Serra, 1977) and by
the results of analog and numerical mechanical mod-
els of thrust ramps with a weak décollement layer (Liu
and Dixon, 1992; Liu et al., 1992; Strayer and Hudleston,
1997).

The assumptions of the simplest possible pure-
shear fault-bend-folding theory are identical to those
for classical fault-bend folding (conserving layer thick-
ness and bed length, with angular fault bends and fold
hinges), except that a décollement layer of finite thick-
ness h undergoes a pure-shear shortening parallel to
bedding above the ramp, with corresponding thicken-
ing perpendicular to bedding. There is an input rigid-
body fault slip d with no externally imposed simple
shear �e, in contrast with simple-shear fault-bend fold-
ing (Figure 9). Thus the area of shortening of the dé-
collement layer in the pure-shear theory is dh, which
is twice the area of shortening in the homogeneous
simple-shear case and which causes pure-shear folds to
grow more rapidly than simple-shear folds (compare
Figure 9 with Figure 7).

More generally, the area of shortening for both the
pure-shear and simple-shear end members, as well as

intermediate combinations of pure shear and simple
shear, is

Ao ¼ Cdh ð2Þ

where C = 1 for pure shear and C = 0.5 for homogeneous
simple shear. Heterogeneous simple shear may have
values of C greater or less than 0.5. Furthermore, using
the appropriate numerical values of this parameter C,
equation (1) more generally describes the relationship
between backlimb dip �b, ramp dip �, and a dimension-
less input displacement or shear, � = tan�1d/h, for both
pure shear and homogeneous simple shear and inter-
mediate combinations, as outlined in Appendix A.
Figure 9 gives a graph of this relationship between limb
dip �b and ramp dip � as a function of input displace-
ment, for the pure-shear case.

The pure-shear shortening and thickening of the
décollement layer within the backlimb requires that
the back-synclinal axial surface not bisect the syncline
within the basal layer, whereas the axial surface does
bisect the syncline within the overlying strata (Figure 4).
The dip, , (Figure 9), of the synclinal axial surface within

FIGURE 7. Relationship between ramp dip � back-dip
�b, and shear �e for simple-shear fault-bend folding. The
inset drawing of a fault ramp corresponds to the angles
shown by the black square (� = 238, �b = 6.58 and �e = 428).

FIGURE 8. Relationship between back dip �b0, front dip �f ,
and shear �e for simple-shear fault-bend folding. The inset
ramp anticline corresponds to the angles shown by the
black square (� = 238, �f = 28.48, �b = 6.58 and �e = 428). Data
from a cross section of the Pine Mountain thrust (Mitra,
1992) lie near the classical fault-bend folding theory (� =
178, �f = 188, and �b = 178), which would correspond to a
décollement layer of zero thickness, and therefore �e = 908.
The ramp dip � is given by the curve �e = 908; in this case,
� = �b.
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the décollement layer is given by

cot ¼ 2C cot �þ 1

sin �b
� cot �b

� �
� cot � ð3Þ

where C = 1 for pure shear (see Appendix A). A graph
of this equation for axial-surface dip,  , is given in
Figure 9.

EVOLUTION OF SHEAR
FAULT-BEND FOLDS

In contrast with classical fault-bend folds, shear fault-
bend folds display a progressive increase in backlimb
dip with increasing fault slip. This evolution is shown
in Figures 10 and 11, which are graphs of backlimb dip
�b as a function of increasing displacement d of the
top of a décollement layer of finite thickness h. For

FIGURE 9. Relationship between ramp dip, �, back-dip, �b0,
and dip of the back syncline,  , within the weak décolle-
ment layer for pure-shear fault-bend folding. The inset
drawing of a fault ramp corresponds to the angles shown
by the black square (� = 348, �b = 15.58, � = 688 and  = 308).

FIGURE 10. The normal evolution of simple-shear fault-
bend folds is represented by lines of constant fault (ramp)
dip � (which remains constant during fold growth, unless
there is footwall deformation). The backlimb dip �b prog-
ressively increases with increasing shear �e until, at infinite
shear �e = 908, the back dip �b asymptotically approaches
the ramp dip �. The simple-shear fault-bend fold shown
as an inset has a ramp dip of 238, therefore, it has tracked
along the � = 238 curve, reaching its present back dip of �b =
6.58 at an angular displacement of �e = 428.

FIGURE 11. The normal evolution of pure-shear fault-
bend folds is represented by lines of constant fault (ramp)
dip � (which remains constant during fold growth, unless
there is footwall deformation). The backlimb dip �b prog-
ressively increases with increasing angular displacement
(shear) � = tan�1d/h until, at infinite displacement d/h (� =
908), the back dip �b asymptotically approaches the ramp
dip �. The pure-shear fault-bend fold shown as an inset has
a ramp dip of 348, therefore, it has tracked along the � = 348
curve, reaching its present back dip of �b of 15.58 degrees at
an angular displacement � of 688.
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the pure-shear fault-bend folds, as well as mixtures of
pure and simple shear, this externally imposed displace-
ment is conveniently represented in dimensionless form
as an angular displacement, � = tan�1d/h, which is im-
mediately comparable to the externally imposed simple
shear �e in the simple-shear end member.

The evolution of any specific shear fault-bend fold
normally would follow along a line of constant ramp
dip, �, as shown in these graphs (Figures 10 and 11),
unless of course the ramp geometry changes with time
because of footwall deformation. For example, in Fig-
ure 10 the simple-shear fault-bend fold shown as an
inset in the graph has a ramp dip of 238, therefore it has
tracked along the � = 238 curve, reaching its present back
dip of �b = 6.58 at an angular displacement of �e = 428.
Note that at a very large displacement (approaching in-
finite shear �e = 908), the backlimb dip asymptotically
approaches the back dip of classical no-shear fault-bend
folding, which is the ramp dip �.

Similarly, the backlimb dips �b of pure-shear fault-
bend folds approach the ramp dip � at large displacement
(Figure 11). For example, the pure-shear fault-bend fold
shown as an inset in the graph of Figure 11 has a ramp
dip of 348, therefore it has tracked along the � = 348

curve, reaching its present back dip �b of 15.58 at an
angular displacement � of 688.

GROWTH STRATA IN SHEAR
FAULT-BEND FOLDS

Because of the progressive increase in both back dip
and limb length, models of sedimentation over shear
fault-bend folds commonly show a combination of limb
rotation and kink-band migration (Figures 4 and 6).
However, models of the simple-shear end member have
the potential to show more variability than the pure-
shear end member because of the variety of possible
shear-zone kinematics. Several simple-shear models are
shown as examples in Figure 12, involving (1) fixed
shear-zone width with progressive increase in shear and
(2) upward and (3) downward propagation of the shear
zone. The progressive increase in shear causes the limb
rotation. Pure-shear models display a pattern of growth
strata that is similar to the fixed-thickness shear-zone
models with progressive increase in shear (compare Fig-
ures 4 and 12). A seismic image from central California

FIGURE 12. Growth models of simple-shear fault-bend folds with contrasting kinematic histories of the shear zones.
(a) The left-hand drawings show a progressive increase in shear within a shear zone of constant thickness, leading
to limb rotation and kink-band migration. It is the progressive change in shear that leads to limb rotation. (b) The
drawings in the center show a progressive upward propagation of shear with constant angular shear, leading to kink-
band migration, but no limb rotation. (c) The right-hand drawings show a progressive downward propagation of shear
with constant angular shear, leading to kink-band migration of the syncline but no limb rotation.
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that resembles these models, showing a combination of
limb rotation and kink-band migration, is shown in
Figure 13 and another from the Bermejo anticline in
Argentina is published by Zapata and Allmendinger
(1996, their Figure 13).

In the case of large displacement, the fold geometry
in pregrowth strata approaches the geometry of clas-
sical fault-bend folding, with a backlimb dip that ap-
proaches the ramp dip. However, even in these cases
growth strata may record the history of limb rotation
that is characteristic of a shear fault-bend fold heritage,
if the sedimentation rate is rapid enough (Figure 14).

EFFECTS OF FAULT
CURVATURE AND
VARIABLE SHEAR

All the models shown so far have straight fault ramps
of constant dip and homogeneous shear. We present sev-
eral models illustrating the effects of curved fault ramps
and heterogeneous simple shear to show how such com-
plexities might be identified in data. For comparison,
notice that Elliott’s (1976) model (Figure 1) shows a com-
bination of a curved fault, heterogeneous simple shear,
and input fault displacement.

Figure 15 displays a set of models with a curved fault
ramp. Figure 15a is a classical no-shear fault-bend fold,
which requires the existence of a progressively widen-
ing curved band a–a0 at the base of the ramp in which
bedding in the hanging wall is parallel to the fault. In
contrast, the simple-shear end member shows no such
band but shows a fault slip that asymptotically reaches
zero at the base of the ramp (Figure 15b and c). There-
fore, the effects of fault curvature and shear are distin-
guishable in suitable seismic images and in models. For
example, notice that such a curved band a–a0 is seen in
Elliott’s (1976) model (Figure 1).

The effects of shear-zone thickness are also shown
in Figure 15b and c. At constant displacement, the ef-
fect of increased shear-zone thickness is to reduce the
limb dips above the hanging-wall cutoff of the shear
zone and to reduce the area of the anticline’s structural
relief. Notice that the input area of shortening decreases
from (a) to (c) in Figure 15.

The effects of heterogeneous simple shear are shown
in Figure 16. The shear within a stratigraphic inter-
val determines the dip of beds overlying the hanging-
wall cutoff of that interval. Notice that increasing shear

FIGURE 13. Seismic image of
a fold limb, showing a combi-
nation of limb rotation and
kink-band migration, similar
to shear fault-bend fold mod-
els (compare Figures 4, 6,
and 12), from Antelope Hills,
San Joaquin Valley, Califor-
nia (Medwedeff, 1988). A
similar seismic image showing
a combination of kink-band
migration and limb rotation
is published by Zapata and
Allmendinger (1996, their
Figure 13) from the Bermejo
anticline in Argentina.

FIGURE 14. Growth model of a pure-shear fault-bend
fold with large displacement such that the backlimb dip
approaches the ramp dip. The geometry in pregrowth
strata is similar to a classical no-shear fault-bend fold, but
the limb rotation recorded in the growth strata indicates
that it is a shear fault-bend fold. The sedimentation rate
increases upward relative to the slip rate.
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increases the dip in the backlimb until it reaches the
ramp dip at infinite shear. In contrast, increasing shear
reduces the dip in the frontlimb. More generally, for-
ward hanging-wall shear reduces the hanging-wall cut-
off angle until it reaches zero at infinite shear.

TRANSMISSION OF SHEAR
TO THE HINTERLAND

Models of ramp anticlines like that of Elliott (1976)
(Figure 1) or the simple-shear end member (Figures 4,
15, and 16) are characterized by shear that is externally
imposed— in a geometric sense— from the hinterland.
Therefore, we briefly consider the implications of this
hinterland transmission for the shapes of adjacent fault
ramps and ramp anticlines to help us understand how
this phenomenon of shear transmission could be iden-
tified in data.

If a series of foreland-propagating simple-shear
fault-bend folds form on the same décollement layer,
then their shear is in series and progressively adds to-
ward the hinterland. As shown in Figure 17, the shear
from a younger, more forward fold deforms both the
footwall and hanging wall of an adjacent ramp in the

hinterland. This reduces the backlimb dip of the hin-
terland structure, because both the ramp dip within the
décollement layer and the effective fault-bend and cutoff
angles are reduced. Thus, an additive hinterland transfer
of shear should produce a distinctive pattern of hinter-
land reduction of ramp dips within the décollement
layer, and in many cases, it should produce a reduction
in backlimb dips.

However, this additive hinterland transfer of shear
is not required. Just as a simple-shear fault-bend fold
transforms fault slip on the ramp into shear within
the décollement layer, any fault ramp in the hinterland

FIGURE 15. Models of curved-ramp fault-bend folding, with and without simple shear. The case of no shear (a) requires
the progressive growth of a curved band a–a0 at the base of the ramp, with bedding parallel to the fault, which is absent in
end-member shear fault-bend folds such as (b) and (c). Also, slip goes to zero at the base of the ramp in the shear cases
(b) and (c) with no bedding-parallel fault, whereas a basal fault of slip a–a0 exists in the nonshear case (a). Therefore
the effects of fault curvature and shear are distinguishable. Figures (b) and (c) also illustrate the effect of increasing shear
zone thickness at constant displacement, which is to reduce the limb dips above the hanging-wall cutoff of the shear
zone and to reduce the area of structural relief of the anticline. Notice that the input area of shortening decreases from
(a) to (c).

FIGURE 16. Model of simple-shear fault-bend fold with
heterogeneous shear. The shear within a stratigraphic in-
terval determines the dips of beds overlying the hanging-
wall cutoff of that interval. Notice that increasing shear
increases dip in the backlimb but decreases the dip in the
frontlimb.
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can absorb that décollement shear quantitatively, as
shown in Figure 18.

QUALITATIVE
IDENTIFICATION OF

PURE-SHEAR AND
SIMPLE-SHEAR

FAULT-BEND FOLDS

We can interpret candidate shear fault-bend folds
by comparing them both qualitatively and quantita-
tively with the simple models, bearing in mind that nat-
ure might produce more-complex structures that are still
fundamentally shear fault-bend folds. For example, Jor-
dan and Noack (1992) discuss the possibility of com-
plex heterogeneous mixtures of the end-member types

involving different shear behavior of each stratigraphic
level, thereby leading to more complex fold geome-
tries. Here we point out several key qualitative features
of shear fault-bend folds that will be used in our seis-
mic interpretations below.

The most straightforward qualitative method of
distinguishing the pure-shear and simple-shear end
members is to observe the shape of the synclinal axial
surface within the décollement layer (Figure 4). In simple-
shear models the axial surface bisects the syncline be-
cause layer thickness is everywhere conserved. In con-
trast, the syncline’s axial surface does not bisect in pure-
shear models because the décollement layer thickens
above the ramp. This causes the back syncline, at stra-
tigraphic levels above the décollement layer, to be dis-
placed toward the hinterland of the fault bend (Figure 4).

Another distinctive aspect of both end-member
models is that the anticlinal axial surface marking the

FIGURE 17. Hinterland trans-
fer of shear. Shear from a
younger simple-shear fault-
bend fold toward the fore-
land may deform the footwall,
fault ramp, and hanging wall
of an adjacent fold toward the
hinterland, thereby reducing
its effective cutoff and ramp
angles and back dip. In this
model, the younger shear is
transferred through the adja-
cent structure to produce a
progressive increase in shear
toward the hinterland. In con-
trast, Figure 18 shows a hin-
terland termination of shear.

FIGURE 18. Hinterland ter-
mination of shear. In con-
trast with Figure 17, this model
shows that shear from a youn-
ger simple-shear fault bend
in the foreland can terminate
at a fault in the hinterland,
which might happen if the
décollement layer is stronger
in the hinterland or if a dis-
crete basal fault is weak rela-
tive to the layer. Only the
hanging-wall geometries dif-
fer between Figures 17 and
18; the footwall geometries
are identical.
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top of the back fold limb terminates at the fault at the
top horizon of the décollement layer. Therefore, the in-
flection in dip of the syncline’s axial surface should be
at this same top horizon in pure-shear fault-bend folds
(Figure 4). We will see this property displayed in a Nan-
kai Trough example, below.

CASCADIA
ACCRETIONARY WEDGE

Low-taper, sediment-rich accretionary wedges com-
monly have ramp anticlines that qualitatively resem-
ble shear fault-bend folds. Examples are the Cascadia
wedge offshore western Canada (Hyndman et al., 1994)
and the Nankai wedge offshore Japan (Moore et al.,
1990, 1991), both of which are shown in Figure 5. We
begin by analyzing one structure from the Cascadia
accretionary wedge that was well imaged as part of the
Canadian Lithoprobe Project (Hyndman et al., 1994).
Observe Figure 19, which is a depth-converted version
of part of line 89-05. An along-strike image of the same
structure in time is shown on the right-hand side of
Figure 5 (line 89-04). The time section of Figure 19 was
depth converted by use of a heterogeneous depth stretch
based on a smoothed velocity model that incorporates
velocity analysis from Yuan et al. (1994) and stacking
velocities. Both seismic lines appear to be oriented within
208 of true dip direction of this structure, according to
maps of Hyndman et al. (1994) and axial surface mapping
(Shaw et al., 1994). In contrast, the left-hand Cascadia
structure in Figure 5 is much more oblique (�408) and
hence is elongated.

The structure in Figure 19 shows a backlimb geom-
etry that qualitatively agrees with simple-shear models
(compare with Figure 4). The backlimb dip, �b, of 5–138
is substantially less than the ramp dip of � = 35–408,
indicating a shear fault-bend fold with a back syncline
that approximately bisects the syncline and emanates
from the base of the fault ramp, which eliminates pure-
shear models. The fault picks that constrain the fault
geometry are shown and rule out strongly listric fault

interpretations. Furthermore, fault slip goes to zero or
nearly zero at the base of the ramp, indicating that no
significant basal fault exists.

This structure is more complex than the simple
models of Figure 4, because the fault ramp is not straight
but is instead composed of two segments that dip 358
and 408. Furthermore, the backlimb has two kink bands,
ab and bc, of different dips. Let us begin by treating each
segment separately. Applying the homogeneous simple-
shear theory (Figure 10), we find that a backlimb dip �b

of 11–128 within the lower kink band ab and a lower
ramp dip � of 358 predict an external simple shear �e

of 31–328. The upper backlimb dip �b of 58 within the
upper kink band bc together with an upper ramp dip �

of 408 predicts an external simple shear �e of about 88.
We test these predictions by line-length restoration

of many beds in Figure 19, which shows that shear
is heterogeneous on several scales. The lowest 340 m,
which terminates in kink-band ab, has a somewhat het-
erogeneous shear that is overall about 318 and agrees
with the 31–328 obtained from dips via theory above.
The next 450 m, which terminates at the fault in kink-
band bc, has a shear of about 88 and agrees with 88 ob-
tained via theory. Thus the measurements from line-
length restoration of many reflectors are in very good
agreement with application of the homogeneous simple-
shear theory to limb and fault dips.

About 120 m of growth strata has accumulated over
the base of the backlimb during deformation and re-
cord limb rotation and kink-band migration (see also
Figure 5). Furthermore, the reflector geometry indicates
that the next shallow hinterland thrust to the right
(east) deactivated just before the initiation of our struc-
ture (Figure 19).

NANKAI TROUGH
ACCRETIONARY WEDGE

The frontal ramp anticline of the Nankai Trough
(Figure 20) is a scientifically well-documented structure

FIGURE 19. (a) Depth-converted seismic image of part of the toe of the Cascadia accretionary wedge offshore western
Canada, produced as part of the Lithoprobe Project (Hyndman et al. 1994) (line 89-05; h = v). (b) Small left-hand inset
shows key fault picks that constrain the ramp geometry and indicate that it is not listric. (c) Small right-hand inset
shows unfolding of the hanging wall based on conservation of bed length. The hanging wall has been unfolded to the
regional dip, which allows measurement of the shear based on the deformed hanging-wall cutoff. The shear profile
shows the deformation of a line originally perpendicular to bedding before deformation. An overall simple shear �e

of 318 is observed in the lowest 340 m that terminates at the fault in kink band ab, which agrees well with the value
of 31–328 predicted via theory (Figure 10) from the backlimb dip �b of 11–128 for kink-band ab and a lower fault dip � of
318. A simple shear �e of 88 is observed in the next 450 m that terminates at the fault in kink band bc, which agrees well
with a shear of 88 predicted via theory from the backlimb dip �b of 58 for kink-band bc and an upper fault dip � of 408.
(d) Interpreted section. Notice that fault slip goes to zero at the base of the ramp indicating that no significant bedding
parallel fault exists. Shallow growth strata show limb rotation. Shallow reflector geometry indicates that growth began
immediately upon termination of slip on the shallow thrust to the right (east).
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because it is the site of Ocean Drilling Project hole ODP-
808/808I and extensive scientific studies in ODP Legs
131, 190, and 196. The borehole, which was extensively
cored and logged, lies along the seismic line, and both
the thrust ramp fault zone and the underlying décolle-
ment stratigraphic interval were cored. The depth seis-
mic line is within 5–108 of the dip direction, as shown
by Sea Beam bathymetry (Moore et al., 1991, 2001).

It should be noted that there is significant defor-
mation prior to, and in addition to, the development of
well-established dominant fault ramp structures in the
front of the Nankai wedge (Figure 5). This is shown by
the significant deformation of the footwall of the ODP-
808 thrust and of the next seaward anticline drilled by
ODP hole 1174, for which the fault ramp has yet to
accumulate much displacement. Elsewhere in the Nan-
kai Trough, Morgan et al. (1995) and Morgan and Karig
(1995) have documented similar distributed deforma-
tion ahead of the frontal thrust ramp. Distributed de-
formation and minor wedge faulting are proportionate-
ly less significant to the total hanging-wall structure of
ODP-808; nevertheless, significant wedging can be seen
in the lower backlimb, similar to that in the footwall
(Figure 20).

We interpreted the ODP-808 fault-ramp location
based on reflector geometry and borehole data that
constrain the ramp location and reflector correlations
(see fault picks in Figure 20). The fault is a 60-m-wide
zone with overturned beds (Tiara et al., 1991a, p. 139).
Such seismic data would be interpreted traditionally
with a curved, sled-runner fault geometry. However,
careful examination of reflector geometry in compar-
ison with curved fault models (Figures 1 and 15) shows
that the fault cannot be substantially curved near the
base of the ramp. Furthermore, recent, not-yet-published,
3-D seismic data show nearly straight faults abruptly
taking off of the detachment (Gulick et al., 2000, also
see Bangs et al., 1999, Moore et al., 1999, 2001). There-
fore we proceed with a nearly straight-ramp interpre-
tation (Figure 20).

The depth-migrated seismic image of the frontal
thrust ramp (Figure 20) is qualitatively similar to shear
fault-bend-folding models. In particular, the backlimb
dip, �b � 138, is substantially less than the ramp dip,
� = 358. Furthermore, the back syncline in the highly
reflective interval of the hanging wall is displaced subs-
tantially to the hinterland of the base of the ramp, in
a way that is qualitatively similar to pure-shear fault-
bend fold models, as discussed in the preceding section
(compare Figure 4). Furthermore, the anticlinal axial
surface at the top of the backlimb terminates at the fault
at the horizon of the bend in the back syncline, in
agreement with pure-shear models.

On the basis of the observed backlimb dip �b � 138
and the ramp dip � = 358, we compute the dip of the
back synclinal axial surface in the weak décollement
layer to be  = 318. This axial surface intersects the
back syncline in the overlying lid near the base of the
more highly reflective interval (see pure-shear model,
Figure 20). This point of intersection, according to the
pure-shear model, should mark the top of the décolle-
ment interval. If we trace the horizon of intersection
updip to the fault ramp, we see that it terminates at the
fault at the termination of the back anticlinal axial
surface, in agreement with theory. Therefore the first-
order shape of the structure agrees quantitatively with
the pure-shear end-member model. The back-dip and
ramp angles predict a pure shear dimensionless fault
slip d/h � 1.7 (� = tan�1d/h � 598). The location of the
top of the décollement layer yields a décollement thick-
ness h of about 230 m, which indicates an input fault
slip d of about 390 m.

Core from ODP-808 shows an intensely deformed
basal detachment zone that is 19 m thick (Moore et al.,
1991; Tiara et al., 1991b). Overlying strata that would
correspond to the stratigraphic interval of the décolle-
ment layer of the pure-shear interpretation is com-
posed of Shikoku Basin muds, and the overlying, more
highly reflective interval is composed of Shikoku Basin
turbidites. Analysis of faulting in ODP-808 core and

FIGURE 20. (a) Depth-migrated seismic image of the toe of the Nankai Trough accretionary wedge at Ocean Drilling
Project site ODP-808, offshore Japan (Moore et al., 1991) (line NT62-8; h = v). (b) The small left-hand figure shows con-
straints on fault-ramp location based on reflector geometry at locations shown by arrows and by the location in ODP-808
core. (c) Small right-hand figure shows best-fitting pure-shear model discussed in text. (d) Annotated seismic image showing
key observations indicating a pure-shear fault-bend fold origin. Note that the shallow structure is somewhat detached.
The deep backlimb geometry qualitatively agrees with pure-shear models (compare Figure 4) with a backlimb dip �b = 11–138
that is less than the ramp dip � = 358 and a back syncline that is displaced substantially to the hinterland of the fault bend,
which eliminates simple-shear models. Simple-shear models are less favored by the observation of a 19-m-thick detach-
ment zone observed in the ODP-808 core. The backlimb dip �b � 138 and ramp dip � = 358 yield a pure-shear fault-bend fold
prediction of the back synclinal axial surface in the décollement layer of  = 318 , which quantitatively agrees with the
seismic image as shown in the right-hand figure. The location of the top of the décollement is indicated by the inflection
in the back syncline, which agrees with the location indicated by the fault cutoff of the back anticline, as predicted
by pure-shear models (compare Figure 4). The back-dip and ramp angles predict a pure shear dimensionless fault slip
d/h = 1.7 (� = tan�1d/h � 598). The location of the top of the décollement layer yields a décollement thickness h of about
230 m, which indicates an input fault slip d of about 390 m.
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image logging indicates a higher density of faulting
below the turbidites (Tiara et al., 1991a, Figure 155;
Shipboard Scientific Party 2001).

The next thrust ramp to the north of ODP-808 (Fig-
ure 21) shows a similar ramp dip but a substantially

different hanging-wall geometry that qualitatively agrees
with simple-shear models (compare Figure 4). The back-
limb dip �b = 23–258 is less than the ramp dip � = 398,
indicating a shear fault-bend fold, but the fact that the
back syncline approximately bisects the syncline and

FIGURE 21. (a) Depth-migrated seismic image of structure just interior to that of Figure 20 (Moore et al. 1991) (line NT62-8;
h = v). (b) Annotated seismic showing a backlimb geometry that qualitatively agrees with simple-shear models (compare
Figure 4). The backlimb dip �b = 23–258 is less than the ramp dip � = 398, and the back syncline approximately bisects
the syncline and emanates from the fault bend, which eliminates pure-shear models. The backlimb dip �b = 23–258 and
ramp dip � = 398 predict a simple shear of�e = 60–658. The stratigraphic level of the top of the shear zone is indicated by the
fault cutoff of the back anticline, as shown by simple-shear models (compare Figure 4), which yields a décollement thickness
h of about 190 m. The displacement of the top of the shear zone is therefore d = h tan �e , or about 330–410 m.
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emanates from the fault bend eliminates pure-shear mod-
els. Furthermore, the steepness of the backlimb quali-
tatively indicates very substantial shear, indeed, more
than in the Cascadia example, which had a similar ramp
dip of 35–408 but limb dips of only 58 and 128 at two
stratigraphic levels, thereby indicating shears �e of 88
and 318 (Figure 19).

Applying the simple-shear theory (Figure 10), we
find that a backlimb dip �b of 23–258 together with a
ramp dip � of 408 predicts a simple shear �e of about
63–678. Furthermore, the stratigraphic level of the top
of the shear zone is indicated by the fault cutoff of the
back anticlinal axial surface (as shown by simple-shear
models— compare Figure 4), which yields a décolle-
ment thickness h of about 190 m and is therefore sim-
ilar to that of the previous structure. The displacement
d of the top of the shear zone is h tan �e, or about 330–
410 m. This very substantial shear, of �e = 63–678, of
course requires substantial transfer of shear toward the
hinterland. Unfortunately, the structures to the north
are not well imaged and we cannot test this implica-
tion at present.

DISCUSSION

Shear fault-bend folding produces very distinctive
geometries for ramp anticlines. They are characterized
by long, gentle backlimbs that dip less than the fault
ramp does, in contrast with classical fault-bend folding.
Backlimb dips and limb lengths progressively increase
with fault slip, by a combination of limb rotation and
kink-band migration. Application of simple end-member
shear fault-bend foldmodels todepth-seismic images from
the Nankai Trough and Cascadia accretionary wedges
shows agreement between theory and data, with sub-
stantial shear (� = 40–658) over stratigraphic intervals a
few hundred meters thick. Furthermore, the structural
styles of many ramp anticlines in the compressive toe
of the deep-water Niger Delta are qualitatively very sim-
ilar to shear fault-bend fold models (Connors et al., 1998).
Therefore, we suggest that shear fault-bend fold con-
cepts may have wide applicability, in spite of their lim-
ited application to date. Shear fault-bend folding may
be particularly relevant at the toes of passive margins,
which are important areas of present-day oil exploration.
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APPENDIX A

We present here a brief derivation of the simple-
shear and pure-shear fault-bend folding theories, as a
single combined theory following J. Suppe (2004, un-
published works), using the geometric elements shown
in Figures 22 and 23. The theory is conceptually similar to
that of Jordan and Noack (1992) but differs substantially
in detail. A thrust steps up from a bedding-parallel de-
tachment at an angle �. There is a basal deformable
layer of original thickness h that is allowed either to
(1) undergo homogeneous simple shear parallel to bed-
ding or (2) to shorten and thicken to h0 within the back-
limb by pure shear parallel to bedding. In contrast,
the overlying strata undergo no externally applied sim-
ple shear and instead conserve bed length and layer
thickness.

We now apply the constraints of conservation of bed
length and area, and of continuity, to obtain the basic
equations of simple-shear and pure-shear fault-bend
folding. The two theories are end members differing
only by the numerical value of a parameter C that de-
scribes the area of shortening of the basal deformable
layer after a displacement d of its top from q to q0

Ao ¼ Cdh ð4Þ

where C = 1/2 for homogeneous simple shear and C = 1
for pure shear. Other values of C are possible because of
heterogeneity or because of mixtures of end members,
but here we only consider the two special cases.

For purposes of the derivation, we partition the de-
formation into an imaginary horizontal displacement
followed by folding. The geometry after a horizontal
simple shear �e = tan�1d/h is shown in the bottom of
Figure 22. In the pure-shear case, the geometry after the
same horizontal displacement d is shown in the bottom
of Figure 23, for which the same function� = tan�1d/h can
be defined. The hanging-wall cutoff of the top of the
basal deformable layer is displaced a distance d, from
r to r, producing an area of shortening of Ao = dh/2 in
the homogeneous simple-shear case and Ao = dh in the
pure-shear case, which is the area of overlap between
the hanging wall and footwall in our imaginary state
before folding.
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After folding, there is no overlap. The hanging-
wall cutoff of the top of the deformable basal layer is
displaced a distance w, from r 0 to r 00, such that the bed
segment r 0s0 = Lo is rotated to become r 00s0 = L with a limb
dip �b0, as is shown in the bottom of Figures 22 and 23.

By applying conservation of bed length to triangle
Dr 0r 00s0we get

w ¼ 2L sinð�b=2Þ ð5Þ

and by applying the law of sines to triangle Drr 0r 00 we get

cosðð�b=2Þ � �Þ
d

¼ sin �

2L sinð�b=2Þ
¼ sin �

rr00
: ð6Þ

Simplifying, we obtain the ratio of displacement d to
deformed limb length L

d=L ¼ sin �b cot �þ 1 � cos �b: ð7Þ

By constraining the area of structural relief A to be
equal to the area of shortening, Ao = Cdh, we have

A ¼ Cdh ¼ LðL � dÞ sin �b

2
ð8Þ

and

cot� ¼ h

d
¼ sin �b

2C

L

d

� �2

� L

d

� �$ %
: ð9Þ

FIGURE 22. Geometric elements used in the derivation
of the simple-shear fault-bend folding theory (after J. Suppe,
2004, unpublished works). The present deformed shape
is shown in the top drawing, with a ramp dip �, backlimb
dip �b0 and limb length L at the top of a basal layer of
thickness h. The derivation factors the deformation into
two nonphysical steps shown in the bottom drawing.
(1) An external shear, �e0, is applied before folding of the
hanging-wall block, to modify the initial cutoff angle �
to an effective cutoff angle �ef and to create an effective
fault bend �ef. (2) The hanging wall is then folded by
flexural slip; in particular, the bed segment Lo at the top
of the basal layer is rotated to become the backlimb of
length L. The folded hanging wall conforms to the fault,
with no voids or overlap, subject to several balancing
constraints. The area of shortening, Ao, is constrained to
be equal to the area of structural relief A and to the area
of overlap before folding (area of triangle Drr 0s). There is
conservation of layer thickness across axial surfaces (� =
908–�b /2), and bed length is conserved (Lo = L). The mid-
dle drawing is an enlargement of the details of triangle
Drr 0r 00 in the bottom drawing.

FIGURE 23. Geometric elements used in the derivation
of pure-shear fault-bend folding theory (after J. Suppe,
2004, unpublished works). The present deformed shape
is shown in the top drawing, with a ramp dip �, backlimb
dip �b, and limb length L at the top of a basal deformable
layer of initial thickness h. The derivation factors the
deformation into two nonphysical steps shown in the
bottom drawing. (1) A dimensionless fault slip, � =
tan�1d/h, is applied before folding of the hanging-wall
block, to produce an overlap of the footwall of area Ao =
dh (area of parallelogram rr 0s0s). (2) The hanging wall is
then folded by shortening and thickening of the basal
layer in bedding-parallel pure shear above the ramp,
reaching a thickness h0. In particular, the bed segment
Lo at the top of the basal layer is rotated to become the
back limb of length L. The folded hanging wall conforms
to the fault, with no voids or overlap, subject to several
balancing constraints. The area of shortening Ao is con-
strained to be equal to the area of structural relief A and to
the area of overlap before folding. There is continuity
of layers across the back syncline in the deformable
basal layer, such that h0/h = sin( + �b)/sin  . Above this
basal layer, there is conservation of layer thickness across
axial surfaces (� = 908 – �b/2), and bed length is conserved
(Lo = L). The middle drawing is an enlargement of the
details of triangle Drr 0r 00 in the bottom drawing.

320 Suppe et al.



Combining with (7)

cot� ¼ sin �b

2C

1

sin �b cot �þ 1 � cos �b

� �2
$

� 1

sin �b cot �þ 1 � cos �b

� �%
ð10Þ

which is the same as (1), the basic equation for dimen-
sionless displacement � as a function of ramp dip � and

limb dip �b. The parameter C = Ao/dh is 1 for pure-shear
and 1/2 for homogeneous simple-shear.

In the simple-shear case, the back syncline within
the basal deformable layer bisects the fold hinge at an
angle � = 908–�b/2, reflecting the fact that layer thick-
ness is conserved. In contrast, in the pure-shear case, the
basal deformable layer of original thickness h is allowed
to shorten and thicken to h0 within the backlimb, by pure
shear parallel to bedding, whereas the overlying strata
conserve bed length and layer thickness.

By continuity of bedding across the back synclinal
axial surface of orientation  ,

h0

h
¼ sinð þ �bÞ

sin 
: ð11Þ

By conservation of area in the deformed backlimb,

1

2
h0L ¼ 1

2
hðL � dÞ þ Cdh ð12Þ

and by combining with (7) and (11) we have

cot ¼ 2C cot �þ 1

sin �b
� cot �b

� �
� cot � ð13Þ

which is the same as (3), the basic equation for the ori-
entation of the back synclinal axial surface  as a func-
tion of ramp dip � and limb dip �b. In the pure-shear
case (C = 1), equation (13) reduces to

cot ¼ cot �þ 2 tan �=2 ¼ cot �þ 2 cot � ð14Þ

and in the homogeneous simple-shear case (C = 1/2), it
reduces to

cot ¼ tan �=2 ¼ cot �

and

 ¼ 90	 � �=2 ¼ �: ð15Þ

The equations outlined above also hold for foot-
wall wedges, producing identical fold-limb geometry
and, in the pure-shear case, identical kinematics (com-
pare Figures 4 and 6). However, in the simple-shear
wedge case, the fault is deformed and the shear zone
is thicker, H, than in the forward simple-shear case, h,
because of footwall shear (see Figures 6 and 24). The
undeformed fault dip �o of the simple-shear wedge is

cot �o ¼ tan�e þ cot �: ð16Þ

FIGURE 24. Geometric elements used in the derivation
of the wedge simple-shear fault-bend fold theory (after
J. Suppe, 2004, unpublished works). The present deformed
shape is shown in the top drawing, with a deformed
ramp dip �, undeformed ramp dip �o, backlimb dip �b0,
and limb length L at the top of a basal layer of initial
thickness h. The derivation factors the deformation into
two nonphysical steps shown in the bottom drawing.
(1) An external shear �e, is applied to the footwall before
folding of the hanging-wall block, to modify the initial
cutoff angle �o to the deformed cutoff angle � and create
an effective fault bend �ef. After shear, the fault has a
change in dip at point r 00. The footwall shear zone has
a thickness H 0 and a displacement d0. (2) The hanging
wall is then folded by flexural slip. In particular, the bed
segment Lo at the top of the basal layer is rotated to be-
come the backlimb of length L. The geometry and
kinematics of the fold limb in the hanging-wall are sub-
stantially different from the case of hanging-wall shear
(Figure 22). This is because there is progressive defor-
mation of the fault, which drives rapid migration of the
fault bend (point r 00), thereby producing distinctive growth
stratal geometries (Figure 6). The middle drawing is an
enlargement of the details of triangle Drr 0r 00 in the bottom
drawing.
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The fault slip rr 00 is from equation (6)

rr00 ¼ d sin �

cosðð�b=2Þ � �Þ ¼
h tan�e cosð�b=2Þ
cosðð�b=2Þ � �Þ

¼ h tan�e

cos �þ tanð�b=2Þ sin �
ð17Þ

and the total thickness of the footwall shear zone is

H ¼ z þ h ¼ rr00 sin �þ h ¼ h
tan�e

cot �þ tanð�b=2Þ
þ 1

� �
:

ð18Þ
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