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The 13C Suess effect in scleractinian corals mirror changes
in the anthropogenic CO2 inventory of the surface oceans
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[1] New d13C data are presented from 10 coral skeletons
collected from Florida and elsewhere in the Caribbean
(Dominica, Dominican Republic, Puerto Rico, and Belize).
These corals range from 96 to 200 years in age and were
collected between 1976 and 2002. The change in the d13C
of the skeletons from these corals between 1900 and 1990
has been compared with 27 other published coral records
from the Atlantic, Pacific, and Indian Oceans. The new
data presented here make possible, for the first time, a
global comparison of rates of change in the d13C value of
coral skeletons. Of these records, 64% show a statistically
significant (p < 0.05) decrease in d13C towards the
modern day (23 out of 37). This decrease is attributable to
the addition of anthropogenically derived CO2 (13C Suess
effect) to the atmosphere. Between 1900 and 1990, the
average rate of change of the d13C in all the coral skeletons
living under open oceanic conditions is approximately
−0.01‰ yr−1. In the Atlantic Ocean the magnitude of the
decrease since 1960,−0.019 yr−1 ±0.015‰, is essentially
the same as the decrease in the d13C of atmospheric CO2

and the d13C of the oceanic dissolved inorganic carbon
(−0.023 to −0.029‰ yr−1), while in the Pacific and Indian
Oceans the rate is more variable and significantly reduced
(−0.007‰ yr−1 ±0.013). These data strongly support the
notion that (i) the d13C of the atmosphere controls ambient
d13C of the dissolved inorganic carbon which in turn is
reflected in the coral skeletons, (ii) the rate of decline in
the coral skeletons is higher in oceans with a greater
anthropogenic CO2 inventory in the surface oceans, (iii) the
rate of d13C decline is accelerating. Superimposed on these
secular variations are controls on the d13C in the skeleton
governed by growth rate, insolation, and local water
masses. Citation: Swart, P. K., L. Greer, B. E. Rosenheim,
C. S. Moses, A. J. Waite, A. Winter, R. E. Dodge, and K. Helmle
(2010), The 13C Suess effect in scleractinian corals mirror changes

in the anthropogenic CO2 inventory of the surface oceans, Geophys.
Res. Lett., 37, L05604, doi:10.1029/2009GL041397.

1. Introduction

[2] The interpretation of the d13C of coral skeletons has
principally focused on factors which control the annual
variation in the amount of inorganic carbon derived from
respiration and influenced by photosynthesis in the internal
pool from which calcification takes place [Swart, 1983]. The
most widely accepted idea is that the d13C is controlled by a
combination of physiological mechanisms [Grottoli and
Wellington, 1999], kinetic effects [McConnaughey, 1989;
McConnaughey et al., 1997], and pH [Adkins et al., 2003].
Moderate increases in the rate of photosynthesis, related to
increases in light intensity, appear to increase the d13C of the
skeleton, while decreases in light result in reduced d13C
values in the skeleton [Weber, 1970]. It has been suggested
that d13C variations in the skeleton might also be related to
changes in growth rate, insolation or other factors affecting
the symbiotic relationship between the corals and their
zooxanthellae. In addition to the annual variation in d13C,
several workers have remarked upon long term trends
towards lower d13C values within coral skeletons and
attributed these declines to the 13C Suess effect [Druffel and
Benavides, 1986]. The first paper to make this observation
in coral skeletons [Nozaki et al., 1978] noted an approximate
0.4‰ decrease in the d13C from 1900 to 1950, about the
same amount as had been observed in tree rings [Damon
et al., 1978]. Although the conclusions of Nozaki et al.
[1978] were disputed [Weil et al., 1981], long term
decreases in the d13C of coral skeletons are well documented
[Asami et al., 2005; Bagnato et al., 2004; Chakraborty and
Ramesh, 1998; Halley et al., 1994; Kilbourne et al., 2007,
2004; Kuhnert et al., 1999, 2000; Linsley et al., 1999;Moses
et al., 2006; Quinn et al., 1998; Schmidt et al., 2004; Swart
et al., 1996a, 1996b; Wei et al., 2009].

2. Data

[3] The new d13C data presented here are from coral skele-
tons collected in the Atlantic and Caribbean (Table 1 and
Figure 1). These corals were mainly taken from water depths
of 3 m or less. The samples from the new locations were
analyzed in a similar manner to previous specimens [Swart
et al., 1996a, 1996b, 1998]. These data have been compared
with data archived in the NOAA paleoclimate database
(http://www.ncdc.noaa.gov/paleo/paleo.html) (Figure 1 and
Table S1).8 As the data in these studies were collected over
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a range of different sampling intervals, all data have been
interpolated to annual average values using a rectangular
interpolation method. For comparative purposes the data
have been separated into two time periods, 1960–1990 and

1900–1990. In those corals in which the record did not start
at or prior to 1900 the actual period of record has been used.
In the following text comparison of trends are considered to
be statistically significant at the 95% confidence limits

Figure 1. (a) The slope of the relationship between d13C and age over the time period 1900–1990 superimposed on a map
of the inventory of anthropogenic CO2 (mmol CO2/kg seawater) in the surface waters [Key et al., 2004; Sabine et al., 2004]
similar to the approach used previously [Grottoli and Eakin, 2007]. The size of the symbols and the color relates to the
magnitude of the slope between the d13C and age. Large symbols and warmer colors indicate a more negative slope. Insert
shows changes in corals from South Florida; corals from enclosed basins such as Florida Bay, Gulf of Kutch and the Red
Sea have not been shown. (b) Similar to (a) but for the period 1960–1990. The changes in the CO2 are greater in the Atlantic
compared to the Pacific, particularly for the 1960–1990 period. The larger changes are located in oceans which possess the
largest inventory of anthropogenic CO2 in the surface oceans. See Tables 1 and S1 for all coral data.

Table 1. Carbon Isotopic Data Reported in This Papera

Species Location and Depth 1960–19xxb 19xx–19xxc Period of Record

Siderastrea siderea Cheeca Rocks, Florida Keys (3 m) −.0274 (.43) −.0093 (.41) 1777–1994
Siderastrea siderea Caloosa Rocks, Florida Keys (3 m) −.0289 (.41) −.0048 (.26) 1817–1994
Montastraea faveolata Crocker Reef, Florida Keys (8 m) −.0377 (.49) −.0094 (.32) 1874–1998
Montastraea faveolatab Elliot Key, Florida Keys (3 m) −.0250 (.33) −.0039 (.06) 1856–1985
Siderastrea siderealc Dominica (8 m) −.0217 (.52) −.0158 (.54) 1942–2000
Solenastrea bournoni East Key, Florida Bay (2 m) −.0654 (.85) −.0123 (.31) 1897–1996
Montastraea faveolatac Dominican Republic (3 m) −.0152 (.19) −.0118 (.29) 1934–1995
Montastraea faveolatab Belize, Glovers Reef (3 m) +.0087 (.04) +.0033 (.07) 1822−1976
Montastraea faveolatac,d Belize, Wee Wee Reef (3 m) −.0343 (.67) −.0108 (.23) 1936–2002
Montastraea faveolata La Paguera (3 m) −.0167 (.19) −.0022 (.03) 1740–1991

aThe r2 value for the regression between age and d13C is given in brackets and bolded values are statistically significant at the 95% confidence limits.
bIf the coral does not extend to 1990, then the period of correlation is between 1960 and the end of the record.
cIf the age of the coral does not extend to 1900, then the period of correlation only extends from oldest age to 1990.
dThis coral was analyzed at Pennsylvania State University.
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[Fisher, 1958]. Comparisons between the means of slopes
between oceans were tested using a Student’s t‐test and
considered to be statistically significant at the 95% confi-
dence limits.

3. Results

[4] Of the 37 corals included in this study, 28 (78%) show
an inverse correlation between d13C and age and 23 have
statistically significant negative correlations with respect to
time over the period 1900‐end of the record (the corals
had varying collection dates and hence the period of the
record varies) (see Table S1). Over the time period 1960–
1990, 19 of the corals have statistically significant negative
correlations with respect to age and the slopes are signifi-
cantly steeper than over the period 1900–1990. Separating
the corals into different oceans (and ignoring the corals from
enclosed basins such as Florida Bay, Gulf of Kutch and the
Gulf of Aquaba), those from the Atlantic Ocean have much
steeper slopes (−0.0074 ± 0.0065‰ yr−1) between d13C and
age and more significant correlations compared to those
from the Pacific (−0.0027‰ yr−1 ±0.0052) and Indian
Oceans (−0.0024‰ yr−1 ±0.0047) (Table S1) over the time
period 1900–1990. The average slope for the Atlantic corals
is statistically significantly different from the Pacific corals
at the 95% confidence limits. There is no significant dif-
ference between the rate of decrease in the d13C in corals in
the Pacific and Indian Oceans. The significant difference in
the relationship between d13C and age between the Atlantic

and Pacific corals is also evident over the interval 1960–
1990 (Figure 2).

4. Discussion

[5] The decrease in the d13C of the coral skeleton nor-
mally might be interpreted as a reduction in the amount of
insolation over time. Since there is no evidence of such a
global decrease in insolation this explanation can probably
be ruled out. Another explanation might be that more neg-
ative values are associated with faster rates of skeleton
formation. While the growth rates for many of the previ-
ously published studies have not been published (Table S1),
those for which data are available show no evidence of an
increase in extension rate coupled with a decrease in d13C
towards the present day. Another pattern which might be
evident in large coral colonies as they grow towards the
water surface would reflect an increase in insolation and
therefore an increase in d13C. This is the opposite trend to
that observed in most of the corals. Changes in the d13C of
some calcareous organisms have been linked to ontogeny
with more depleted values evident in older organisms.
This possibility was discarded as there was no relationship
between the overall age of each colony and the eventual
decrease in the d13C. For example, the same trends were
seen in colonies ∼100 and ∼300 years old.
[6] A final explanation for the relatively consistent trends

in coral d13C, and one preferred in this paper, is that the
d13C of the corals is driven by the anthropogenic addition of
12CO2 to the oceans. This change is known as the 13C Suess

Figure 2. Changes in the d13C with respect to age for corals from the Atlantic and the Pacific/Indian Oceans compared to
published data from sclerosponges [Böhm et al., 1996; Swart et al., 2002; Waite et al., 2007] as shown in Figure 1. All data
have been averaged after removing the mean d13C value of the coral skeleton from 1900 to the present day. The solid lines
represent a five year running mean of the data while the dashed lines show the original data. Corals from the isolated basins
are not included. The error bar represents an average standard deviation of 0.4‰. The average standard deviation is
approximately 0.3 ‰ in the indo‐Pacific corals and 0.4‰ in the Atlantic corals. Data on the changes of the d13C in the
atmosphere since 1980 [Keeling et al., 1980] are shown for comparison and indicate similar decreases to those seen in the
corals and sclerosponges.
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effect [Druffel and Benavides, 1986]. The difference in the
magnitude of the slope of the d13C with respect to time
between the Atlantic and Pacific generally reflects the fact
that CO2 is being recharged into the oceans in the Atlantic
[Key et al., 2004; Sabine et al., 2004], while in the Pacific
Ocean, more deep water is being returned to the surface
(Figure 1). This is evident in the fact that the slope in the
corals in the Atlantic (−0.019‰ yr−1 ±0.015), between the
d13C and age over the time interval 1960 and 1990, is
essentially identical to that of the d13C of atmospheric CO2

(−0.023 to −0.029‰ yr−1) [Keeling et al., 2005] and the
d13C of the oceanic dissolved inorganic carbon (DIC)
[Gruber et al., 1999] (Figure 2). This compares to minimal
average changes of between only −0.0066 and −0.0057‰
yr−1 in the corals from the Pacific and Indian Oceans
respectively.
[7] Anthropogenic carbon exchange between the atmo-

sphere and the ocean has also been recorded in D14C of
coral skeletons. Using age‐corrected radiocarbon records
from corals, Grottoli and Eakin [2007] showed that uptake
of 14C has been greatest in the ocean gyres, supporting
conclusions reached by Quay et al. [1992] that anthropo-
genic CO2 uptake was higher there. Between 1960 and
1970, trends in coral D14C qualitatively resemble trends in
anthropogenic CO2 uptake rates of the oceans. The corre-
lation of the d13C records presented here and the anthro-
pogenic CO2 inventory in the surface oceans indicates that
corals are recording the anthropogenic CO2 uptake by the
oceans and that this signal often outweighs the physiological
signals recorded in d13C records.
[8] The changes over time in the d13C of corals are similar

to variations in the d13C measured in the skeletons of
sclerosponges reported by various other workers, both in the
Atlantic and the Pacific [Böhm et al., 1996; Druffel and
Benavides, 1986; Swart et al., 2002; Wörheide, 1998;
Waite et al., 2007]. In the first study on sclerosponges, a
change of about 0.5‰ in the d13C of the skeleton was
measured from pre‐industrial times to 1970 [Druffel and
Benavides, 1986]. Later work determined that a further
0.4‰ change occurred between 1970 and 1990 [Böhm et al.,
1996], giving a mean change of −0.01‰ yr−1 over the
period 1900–1990 for sclerosponges from the Caribbean.
This change is similar to that observed in another study in
the Bahamas [Swart et al., 2002] on sclerosponges between
1900–1992 (−0.0093 ‰ yr−1) and the average change
for corals over the same period presented in this study
(−0.0085‰ yr−1 ± 0.0060). The d13C changes in sclerosponges
from Pacific locations, like the Coral Sea [Böhm et al.,
2000] and the Great Barrier Reef [Wörheide, 1998]
(−0.0070 and −0.0039 ‰ yr−1), are also significantly less
than those observed in the Atlantic and similar to the
mean change observed for the Pacific corals in this study
(−0.0037 ‰ yr−1 ± 0.0049) (Figure 2). Böhm et al. [1996]
pointed out that the change in the d13C of the sclerosponges
was significantly less than the estimated 1.4‰ decrease based
on HCO3 equilibrium with air CO2. This discrepancy was
postulated to be a result of incomplete equilibrium between
the surface oceans and the atmosphere. However, as mea-
surements of direct changes in the d13C of atmospheric CO2

have only been available since approximately 1980, the
estimate of a 1.4‰ change may be incorrect. The change in
the d13C of atmospheric CO2 from 1980–2000 is approxi-

mately 0.0235‰ yr−1 which is not only similar to the change
in the d13C of sclerosponges over that interval, but also similar
to the record observed in Atlantic corals (−0.027‰ yr−1) for
the same period.
[9] One problem associated with using the d13C of coral

skeletons as records of the d13C of atmospheric CO2 is that
while most corals seem to exhibit the decrease, there are
exceptions. These include instances in which (i) there is
either an increase or no significant change in the d13C,
(ii) there are decadal increases and decreases in the
d13C which bear no relationship to the known changes in
the d13C of atmospheric CO2, and (iii) the decrease in the
coral d13C is greater than that observed in atmospheric CO2.
Perhaps the easiest of these to explain is when the decrease
in the skeleton is greater than expected. These instances all
occur in restricted environments such as Florida Bay, where
enhanced input of organic material is oxidized to release
isotopically depleted CO2. Corals that show increases in
the d13C were observed at several locations. There is no
definitive explanation for these anomalies, but one possi-
bility is that these corals received a greater amount of light
as they grew towards the surface. The decadal variations
seen in many of the corals are perhaps the most puzzling of
the deviations from the negative trend as the timing of these
variations is not consistent even between corals which are
closely located. For example, records from five sites in
South Florida representing two different species all show the
decrease in d13C towards the present day, but superimposed
on this decrease are decadal variations of up to 0.5‰.
Although these higher order variations in d13C are similar,
they do not appear to correlate between the records. As these
sites receive more or less similar amounts of insolation and
experience similar temperatures, variations in the d13C of
the skeleton might be related to a number of factors such
as specific physiological differences between the colonies,
shading of a colony by another coral or organism for an
extended period, local differences in the nutrient concen-
tration in the water, variations in growth rate or skeletal
density or some combination of all of these or other
unknown factors.

5. Conclusions

[10] This paper has shown that most corals exhibit a de-
crease in the d13C of the skeletons towards the present day, a
change which can be attributed to the addition of anthro-
pogenic CO2. The magnitude of this decrease is greater in
the Atlantic compared to the Indian and Pacific Oceans and
can be modified by local bathymetric conditions and the
physiological activity of the corals. If this pattern is truly a
global signal then these trends can be used to correct the
d13C records and reveal the true regional and physiological
controls on the d13C in the coral skeleton.
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