How old are you? Genet age estimates in a clonal animal

M. K. DEVLIN-DURANTE,* M. W. MILLER,† CARIBBEAN ACROPORA RESEARCH GROUP,1 W. F. PRECHT,‡ I. B. BAUMS,*

*Department of Biology, The Pennsylvania State University, 208 Mueller Lab, University Park, PA 16802, USA, †Southeast Fisheries Science Center, National Marine Fisheries Service, 75 Virginia Beach Dr., Miami, FL 33149, USA, ‡Marine & Coastal Programs, Dial Cordy & Associates, 90 Osceola Ave, Jacksonville Beach, FL 32250, USA

Abstract

Foundation species such as redwoods, seagrasses and corals are often long-lived and clonal. Genets may consist of hundreds of members (ramets) and originated hundreds to thousands of years ago. As climate change and other stressors exert selection pressure on species, the demography of populations changes. Yet, because size does not indicate age in clonal organisms, demographic models are missing data necessary to predict the resilience of many foundation species. Here, we correlate somatic mutations with genet age of corals and provide the first, preliminary estimates of genet age in a colonial animal. We observed somatic mutations at five microsatellite loci in rangewide samples of the endangered coral, *Acropora palmata* (n = 3352). Colonies harboured 342 unique mutations in 147 genets. Genet age ranged from 30 to 838 years assuming a mutation rate of $1.195/C_{0.04}$ per locus per year based on colony growth rates and 236 to 6500 years assuming a mutation rate of $1.542/C_{0.05}$ per locus per year based on sea level changes to habitat availability. Long-lived *A. palmata* genets imply a large capacity to tolerate past environmental change, and yet recent mass mortality events in *A. palmata* suggest that capacity is now being frequently exceeded.

Keywords: clonal, longevity, microsatellite, population dynamics, somatic mutations

Received 12 February 2016; revision received 12 September 2016; accepted 19 September 2016

Introduction

The population dynamics of a species depend in part on the longevity of each individual. However, in colonial organisms such as corals neither ‘individual’ nor ‘age’ are easy to define, making longevity the least accessible demographic trait to study for these organisms. Coral colonies consist of genetically identical polyps that each fulfil the function of an individual (reproduction, growth, defence), yet it is the collection of polyps in a colony that represent the ecologically significant unit (Santelices 1999). Hence, studies of coral population dynamics often track the fate of colonies rather than that of individual polyps. The very nature of the clonality of corals allows colonies to survive partial mortality (Hughes & Jackson 1980), propagate asexually through fragmentation (Highsmith 1982), and partake in clonal fission and fusion (Hughes & Jackson 1980). The result is independent colonies (ramets) not connected by live tissue that share the same genotype (clonemates of the same genet). Coral species where clonemates constitute a significant proportion of local populations are found in at least nine coral genera (Table S1, Supporting information). Ramets are produced throughout the lifetime of the genet, and hence, they can be of different chronological age and size although their genetic age (i.e. the time since meiosis and zygote formation) remains the same. Taken together these processes have the net effect of decoupling size of a ramet from its age (Hughes & Jackson 1980).

In noncolonial multicellular organisms, size is often a good proxy of genet age until adult size is attained.
After adult size is reached, age determination becomes more challenging, but the incorporation of environmental signals into tissues (Prouty et al. 2011), the shortening of telomeres with increasing numbers of cell divisions (Barrett et al. 2013), decreasing reproductive output, and phenotypic changes (Caspari & Lee 2004) can be quantified as indicators of age in a wide range of multicellular organisms. Many of these approaches are not useful in plants and colonial invertebrates. Radiocarbon or U-series dating (Radtke et al. 2003) is an alternative to using size or phenotypic changes as a proxy for genetic age; however, this requires the identification and continued existence of the oldest portion of a genet because, as such, environmental signals reflect ramet age, not genet age (Eggins et al. 2005). This may be possible in some clonal plant species in which ramet attachment persists and the centre, typically the oldest portion of a genet, can be identified (Vasek 1980), and perhaps for coral species not prone to fragmentation (Okubo et al. 2007) and phenotypic changes are not obvious because a genetically old but small coral colony is not visually distinguishable from a genetically young and small colony.

A possible method for determining genet age is to use mutation accumulation in somatic tissues to estimate longevity. Despite their asexual origin, clonemates are not always exactly genetically identical. The concept is based on ‘the somatic mutation theory of clonality’ (Klekowski 1997) which reasons that continuous division of mitotic cells in a clonal organism will lead to the accumulation of somatic mutations over time. Somatic mutations convert a genetically homogenous individual into a mosaic with divergent cell lineages (mosaicism). Due to the stochastic nature of somatic mutations, the incidence of genetic mosaicism would be expected to increase with increasing longevity of the organism and also with a higher prevalence of asexual reproduction; gain in ramet number or size increases the total number of dividing cells available for mutation (Orive 2001). Thus, it should be possible to relate the accumulation of somatic mutations to genet age.

Utilizing genetic divergence generated by somatic mutations is a novel approach for calculating lifespans in clonal organisms (Heinze & Fussi 2008). The use of neutral microsatellites is ideal for divergence estimates due to their high mutation rates that range from 10^{-2} to 10^{-6} per sexual generation (Shimoda et al. 1999; Ellegren 2000; Peery et al. 2012). Genetic divergence in microsatellite loci has been used to model clonal age in the aspen tree *Populus tremuloides* (Ally et al. 2008) and the water flea *Daphnia magna* (Robinson et al. 2012).

Limitations of lifespan estimates based on genetic divergence include the necessity of clonality, the low frequency or absence of mutations in some species (Lanner & Connor 2001; Cloutier et al. 2003) and difficulties in measuring mutational rates that are often variable among loci (Chakraborty et al. 1997; Schug et al. 1998). It can also be challenging to distinguish somatic mutations from allelic variation (Heinze & Fussi 2008) if the species under consideration is inbred.

Furthermore, the rate of somatic mutational divergence not only differs between species (Klekowski & Godfrey 1989), but also among individuals (Haag-Liautard et al. 2007; Conrad et al. 2011) with intraspecies variation partly due to varying exposure to environmental stress (de Witte & Stöcklin 2010). Genetic homogeneity can be restored from a mosaic state through sexual reproduction, but also through parallel backmutations or lineage selection (Klekowski & Kazarinova-Fukshansky 1984) which would lead to

Table 1 Published age estimates of coral colonies

<table>
<thead>
<tr>
<th>Species</th>
<th>Age estimate (years)</th>
<th>Method</th>
<th>Region</th>
<th>Depth (m)</th>
<th>Year collected</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gerardia sp.</td>
<td>300–2700</td>
<td>δ13C</td>
<td>Hawaii</td>
<td>400–500</td>
<td>2004</td>
<td>Roark et al. (2009)</td>
</tr>
<tr>
<td>Keratoisis, Isidella</td>
<td>75–126</td>
<td>δ13C</td>
<td>Hawaii</td>
<td>400–500</td>
<td>2004</td>
<td>Roark et al. (2005)</td>
</tr>
<tr>
<td>Pocillopora verrucosa</td>
<td>3.69 ± 0.48</td>
<td>14C</td>
<td>Gulf of Mexico</td>
<td>304–317</td>
<td>Not stated</td>
<td>Prouty et al. (2011)</td>
</tr>
<tr>
<td></td>
<td>3.82 ± 0.55</td>
<td>U/Th</td>
<td>West Ireland</td>
<td>840–1300</td>
<td>1995–1997</td>
<td>Hall-Spencer et al. (2002)</td>
</tr>
<tr>
<td></td>
<td>3.89 ± 0.42</td>
<td>U/Th</td>
<td>Lelu Island</td>
<td>Unknown</td>
<td>2012</td>
<td>Richards et al. (2015)</td>
</tr>
</tbody>
</table>

© 2016 John Wiley & Sons Ltd
underestimates of mutational load and thus clonal age. Despite the limitations, genetic divergence estimates are the most promising technique to estimate genet age in colonial marine invertebrates.

To demonstrate the potential of using somatic divergence estimates to estimate genet longevity, we used genetic divergence in five microsatellite loci to calculate the age of 90 genets of the elkhorn coral, Acropora palmata. *A. palmata* is an ideal species for determining genet age based on somatic mutations because this species relies heavily on fragmentation for local population maintenance (Highsmith 1982; Baums *et al.* 2006a; Williams & Miller 2012) and some genets have >30 members (Baums *et al.* 2014). The process of fragmentation and regrowth of colonies from fragments has been documented photographically via quarterly surveys over the past decade or so (Fig. S1, Supporting information; Williams & Miller 2012) and fragments match donor genet colony genotypes. Furthermore, in a previous range-wide study of population genetic structure in *A. palmata* we noticed the occasional occurrence of three alleles per locus in this otherwise diploid species (Baums *et al.* 2005b). Here, we investigate whether third alleles in *A. palmata* arose from somatic mutations and then use somatic mutations to estimate genet age in this species.

Methods

Study system

Acropora palmata is a fast-growing, branching coral that once dominated coral reefs in the Caribbean and northwest Atlantic. Adult colonies release egg-sperm bundles once a year after the August full moon during a synchronized mass-spawning event. Egg-sperm bundles float to the surface where they break apart. Successful fertilization requires the union of egg and sperm from different genets; that is, *A. palmata* is a self-incompatible hermaphrodite (Baums *et al.* 2005). *A. palmata* is a self-incompatible hermaphrodite (Szramt 1986; Baums *et al.* 2005a), and population genetic data show that the species is genetically diverse and outbred (Baums *et al.* 2005b). Here, we investigate whether third alleles in *A. palmata* arose from somatic mutations and then use somatic mutations to estimate genet age in this species.

Microsatellite scoring. All samples were genotyped at five (166, 181, 182, 192 and 207) previously published, polymorphic microsatellite loci with Mendelian inheritance as shown by experimental crosses (Baums *et al.* 2005b). All five microsatellite loci are AAT trinucleotide repeats. Two 10-µL multiplex PCRs (M-I and M-II) were performed per sample. M-I consisted of 0.2 µL each of primer pairs 166-PET (5 µM), 192-6-FAM (5 µM) and 182-6-FAM (5 µM), 0.2 µL of dNTPs (10 mM), 0.3 µL of *Taq* polymerase (5 U/µL), storage buffer B (Promega) and 6.1 µL H2O. M-II consisted of 0.2 µL each of primer pairs 207-PET (5 µM) and 182-6-FAM (5 µM), 1 µL Promega 10× PCR buffer, 1.2 µL of MgCl2 (25 mM), 0.2 µL of dNTPs (10 mM), 0.2 µL of *Taq* polymerase (5 U/µL) and 6 µL H2O. DNA (100–200 ng, 1 µL) was added to each reaction. Thermal cycling was carried out with Eppendorf Mastercyclers with an initial denaturation step at 95 °C for 5 min followed by 35
cycles of 95 °C for 20 s, 50 °C for 20 s, 72 °C for 30 s. A final extension of 30 min at 72 °C ensured that the majority of amplicons were +A (Brownstein et al. 1996).

PCR products were visualized using an ABI 3730. An internal size standard (Gene Scan 500-Liz; Applied Biosystems) was used for accurate sizing.
Electropherograms were analysed with GENEMAPPER Software 5.0 (Applied Biosystems).

A single genet designation (clonal ID) was assigned to corals that have exact matching multilocus genotypes (MLGs) or have exact matching MLGs (share all the same diploid state ancestral alleles) and have an additional allele(s). The exceptions to this rule were 4% of mutations that were either a full mutation (e.g. ancestral state 166/175 to 166/178) or a loss of heterozygosity (e.g. to 166/166; Table 3), but at the other four loci, all alleles were shared with other members of the genet (see Table S2, Supporting information, for an example genet).

Loci had an average of 19.6 alleles (SD \(\pm 2.3 \)). This level of polymorphism translated into a high power of distinguishing closely related (i.e. inbred) MLGs from those that were the product of asexual reproduction (i.e. clonemates) where the probability of identity \(= 10^{-5} \) (Baums et al. 2005b) (see Fig. S2, Supporting information). When considering only genotypes with two alleles per locus \((n = 2643, \ i.e. \ those \ without \ somatic \ mutations) \) the average probability of encountering a genotype more than once by chance (\(p_{sex} \)) was \(2.23 \times 10^{-7} \) (MLGsim 2.0, http://www.rug.nl/research/gelifes/tres/software), indicating that identical genotypes were the result of asexual reproduction. Once asexually produced, identical MLGs are removed from the data set, no heterozygote deficits are detected [i.e. all loci adhere to Hardy–Weinberg expectations (Baums et al. 2005a)], and thus, \(A. \ palmata \) shows no sign of inbreeding (Halkett et al. 2005).

For all genets with at least two ramets each novel mutation was reported [referred to as a unique mutation (UM)]. A total of 342 UMs were found in 147 genets with 1387 ramets (Table 2; Fig. 3). To discriminate between a mutated allele and a PCR error, a singleplex PCR was performed for all UMs. Following a stepwise-mutation model (Kimura & Ohta 1978), the smallest
possible mutation step that could have resulted in the new allele was used to determine which of the two ancestral alleles mutated and the size of the mutation step (in repeat units). Mutations were excluded if there were no other samples within the genet that were biallelic at that locus making it impossible to determine the mutation step. However, sometimes a genet had only two ramets and both ramets had different mutations at the same locus. In that case the ancestral allele state was determined to consist of the two alleles found in both ramets (Table 3). The mutation-step analysis contained a reduced sample size of \(n = 1387 \) (Table 2).

Clustering analysis

To determine whether the samples with three alleles could be attributed to somatic mutations or chimerism, we applied a Bayesian clustering analysis using the program STRUCTURE 2.3.4 (Pritchard et al. 2000) to all genets with at least five ramets (\(n_{\text{genets}} = 90 \); Table 2). We forced a diploid state by replacing the ancestral allele with the third allele mutation. There were no missing genotype data. We assumed that ramets should only diverge from the ancestral genotype in one or two loci or alleles if somatic mutations were the cause, following previous studies (Puill-Stephan et al. 2009; Maier et al. 2011). Alternatively, colonies were defined as chimeras if genotypes differed by more than 60% in their major cluster assignment probability from other members of their genet as defined by Schweinsberg et al. (2015).

Fig. 3 Mutation-step analysis. In panel (A), as the repeat length of a microsatellite locus increases, the total number of unique mutations found within each locus increases linearly (slope = 6.47 ± 0.47 SD, \(F_{2,3} = 186.63, \quad P < 0.001, \quad \text{adj.} R^2 = 0.98 \)). (B) Most mutations were one step away from the ancestral allele size (i.e. ± 3 bp) with allele 1 (the smaller of the two alleles) showing more repeat unit losses than gains and the larger allele (allele 2) showing more gains than loses of repeat units. Twenty-nine mutations were excluded from (B). Twenty-eight mutations were excluded because the mutation step was equidistant for alleles 1 and 2 so that the mutated allele could not be determined; one mutation was a dropped allele.

Clonal richness vs. mosaicism

We evaluated whether somatic mutations were found more often on reefs where little sexual recruitment was evident (and thus were presumably inhabited by older individuals) by tallying all mutations in all samples and comparing the number of mutations detected with the number of genets present. This was expressed as clonal richness. We did this analysis on two data sets. We compared the proportion of nonmosaic samples to clonal richness on reefs with \(n \geq 10 \) samples, with no limitations placed on the genet size (Table 2). Therefore, clonal and nonclonal samples were included in this analysis (i.e. all genotype samples \(n = 3352 \); Table 2). Then, we only compared reefs that were sampled with similar sampling effort [see Table 1 in Baums et al. (2006a)]. The clonal richness \(R \) is calculated as the number of genets \(G \) relative to the number of analysed ramets \(N \) with the modification by Dorken & Eckert (2001):

\[
R = \frac{G - 1}{N - 1}.
\]

A monoclonal stand has a clonal richness of \(R = 0 \), whereas the maximum clonal richness of \(R = 1 \) is reached when all samples from a reef are of a different
MLG. We chose clonal richness as an indicator for clonal diversity because other measures assume a constant ploidy level (most often diploidy, e.g. G_0/G_2) and were not designed for samples with somatic mutations. Estimates of genet age using genetic divergence

The methods for calculating clonal age utilizing genetic divergence are described in Ally et al. (2008). In brief, there are two statistics, π_k and S_k, that describe genetic divergence within a clone (Slatkin 1996). We calculated the average number of pairwise differences per locus for the kth clone:

$$\pi_k = \frac{1}{n} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} s_{ij},$$

where n is the number of sampled ramets and s_{ij} is the number of genetic differences between ramet i and j averaged across loci (Ally et al. 2008). We chose π_k to measure the level of genetic divergence because it has been shown to be more robust to deviations from a star-like phylogeny than S_k (the observed proportion of polymorphic loci) (Ally et al. 2008). Two demographic models were contrasted: one of constant ramet population size (as in the classic Wright–Fisher model), while...
the second demographic model is one of population growth. The ramet population growth model was determined by plotting both \(p_k \) vs. \(S_k / \sum_{i=1}^{n} (1/i) \), which should exhibit a 1:1 slope if a population has been constant in size, and \(p_k \) vs. \(2S_k / n \) in which a 1:1 slope would be predicted for a clonal growth model. The fit of the models was determined by regression analysis obtained in SIGMAPLOT 10.0.

Further restrictions, to the sample set, were applied for clonal age estimates, with ramet size of \(n \geq 5 \) resulting in \(n = 90 \) genets used in this analysis (Table 2). While most colonies were sampled once, we captured the allelic variation within a genet by restricting age calculations to those genets with at least five ramets. We still may have missed some somatic mutations at these loci leading to an underestimation of the minimum genet age. Note that ramets lacking mutations but belonging to a genet that had other ramets with mutations (ramet number 5 or greater) were included (Table 2). If the genet had at least five ramets but no ramets had mutations, then microsatellite divergence, and therefore, age could not be calculated.

There are currently no direct estimates for microsatellite mutation rates in \(A. \) palmata. We assumed the same mutation rate for all samples, but we were uncertain about that rate. Hence, we used a range by setting a maximum and a minimum. The upper bound for the mutation rate (relatively fast mutation rate) implies that a shorter amount of time has passed to accumulate the observed variation relative to the lower bound of the estimate (relatively slow mutation rate). Genet P1028 from Elbow reef in Florida had the smallest microsatellite divergence rate. This genet had 55 ramets, among which the largest single colony was \(270 \times 170 \times 70 \) cm \((L \times W \times H)\). The branch extension rate was measured directly on three ramets of this genet (P1028) during January–July 2006. A small beaded cable tie was deployed on each of three branches of each ramet as a benchmark. The length of the branch tip from this benchmark was measured in situ over this 6-month period, averaged over branches and ramets and converted to an annualized rate of linear branch extension equal to 4.441 (±2.64 cm SD) cm/year. The annual increment in colony diameter was assumed to be twice the branch extension rate, 8.882 cm/year. The maximum measured diameter of a ramet of this genet was 270 cm so the colony must have been growing for at least 30.4 years. This results in a maximum mutation rate of 1.195−04 per locus per year.

We turned to the geological record to establish a minimum mutation rate. Carbon-14 dates from cores taken at Looe Key in Florida put the start-up of \(A. \) palmata reef growth at the base of present-day shallow spur and reef zone at around 6500 ybp (Lidz et al. 1985). Our clone with the highest \(p_k \) value is from Looe Key in Florida (Table S2, Supporting information), thus assumed to be the oldest, and the minimum mutation rate can be calculated by setting this clone at a maximum age of 6500 years. This results in a minimum mutation rate of 1.542−05 per locus per year. This is likely the maximal value of the minimum mutation rate because reef growth may not have been continuous at Looe Key.

Results

Identification of mutation type (somatic vs. chimera)

Of the 90 genets with at least five ramets (comprising 1294 samples), there were only three samples in two genets (two samples in genet P2445 from Looe Key, Florida and one sample in genet P2151 from Molasses Reef, Florida) that differed by more than 60% in their major cluster assignment from other ramets of the genet (Fig. 4). Therefore, the majority of samples (98%) showing three alleles were determined to be the result of somatic mutations rather than chimera (Fig. 4).

Somatic mutations

Genets with at least two ramets were included in the mutation-step analysis. Of the 3352 samples genotyped, 1387 ramets of 147 genets satisfied this requirement across the Caribbean and Florida. We found 342 unique mutational changes across the five microsatellite loci (Table 3). Of the 342 somatic mutations, 305 involved a one-step increase \((n = 150)\) or decrease \((n = 155)\), with an additional 14 one-step mutations in which direction could not be determined due to the mutated allele size being equidistant from each parental allele (e.g. 163/169 parental genotype with mutated allele 166). This resulted in 93% of the mutations being either a one-step increase or decrease further supporting the explanation of somatic mutation for the 3rd alleles. The remaining 22 mutations were the result of either multistep changes or, in one case, involved the loss of heterozygosity.

An important factor contributing to a microsatellite mutation rate is the repeat length; the more repeat units, the greater the opportunity for replication slippage. The five loci used here had repeat lengths from 10 to 28 trinucleotide repeats (Fig. 3A). As expected, with increasing repeat length the number of UMs observed at a locus increased linearly (Fig. 3A). This result has also been confirmed in experiments with trinucleotides in humans where the mutation rate for 28–31 repeat lengths was more than four times that seen for 20–22 repeat lengths (Zhang et al. 1994.) When considering all loci together, and designating allele 1 as the
smaller allele in an individual and allele 2 as the larger, there were more mutations found in allele 2 (213) than allele 1 (97) (Fig. 3B; excluding the 14 mutations in which the mutated allele could not be determined, 17 mutations in homozygotes and the one mutation determined to be a loss of heterozygosity).

Most colonies within our collection were only sampled once; however, 11 colonies from Florida were resampled in 2011 and 2014 at 2–8 locations within the colony (these samples were not included in any other analysis; Table S3, Supporting information). There were five colonies from Sand Island and Molasses reefs in Florida that had no mutations when initially sampled from 2005 to 2009 and reanalysis in 2011 and 2014 also showed no mutations (average $n = 4.6$ samples per colony). One colony from Sand Island had multiple alleles at locus 166 of 149/173/176 bp in 2007. The same three alleles were found in the additional sampling throughout the colony ($n = 4$) in 2011. In two colonies, multiple alleles were not recovered when resampled ($n = 8$). In three colonies intracolonial variation was observed: in one case, a mutation was found in only half the samples from one colony. In the other two colonies, a new mutation was recovered in some samples, with the original mutation(s) varying throughout replicate samples (Table S2; Fig. S4, Supporting information). Thus, sampling a colony once may cause an underestimation of mutational load due to intracolonial variation in some colonies (Table S2, Supporting information).

Clonal Richness vs. mosaicism

Clonal richness ranged from 0 to 1 and is directly proportional to the number of sexual recruits. The proportion of nonmosaic genotypes (i.e. those with only biallelic loci) increased with increasing genotypic diversity of the *A. palmata* stand (Fig. 5A) considering a total sample size of 3352 from 13 regions. However, we were concerned that this result may be due to a greater power of detection in genets with more ramets. Therefore, we limited our analysis to colonies that were sampled on three spatial scales (5, 10 and 15 m radii) using...
a random sampling procedure (Baums et al. 2006a) to
detect both common and rare genets, resulting in 486
total samples from seven regions. Again the proportion
of nonmosaic genotypes increased with increasing geno-
typic diversity when only considering reefs sampled
with similar sampling effort (Fig. 5B). Therefore, mosaic-
ism appeared to be more common on reefs dominated
by asexual reproduction than those dominated by sexual
recruitment.

A previous study showed that genotypic richness
was greater and more homogeneous in the eastern (US
Virgin Islands, St. Vincent and the Grenadines, Bonaire
and Curaçao) than the western province (Florida, Bah-
amas, Panama and Mexico) with the exclusion of
Navassa (Baums et al. 2006b). When comparing the pro-
portion of nonmosaic genotypes per reef between west-
ern (also including Belize, the Dominican Republic,
Mona and Navassa) and eastern populations, the east
had significantly more nonmosaic genets than the west
(Mann–Whitney U-test, east n = 38, west n = 48,
P < 0.001).

Growth models

The regression of \(\pi_k \) vs. \(S_k / \sum_{i=1}^{n-1} (1/i) \) (Fig. 6A) for the
western population had a slope of 1.03 ± 0.10 SE
(\(F_{1,66} = 98.09, P < 0.0001 \), adj. \(R^2 = 0.59 \)) and was not
significantly different from the value expected [1:1 rela-
tionship of \(\pi_k \) vs. \(S_k / \sum_{i=1}^{n-1} (1/i) \)] if genet size were
approximately constant over time with continuous
ramet turnover (ANOVA, \(P = 0.47 \)), whereas the regres-
sion of \(\pi_k \) vs. \(S_k / n \) (Fig. 6B) for the western population
had a slope of 1.19 ± 0.22 SE (\(F_{1,66} = 29.06, P < 0.0001 \),
adj. \(R^2 = 0.30 \)) and was significantly different from the
value expected (1:1 relationship of \(\pi_k \) vs. \(S_k / n \)) if the
genet had been spatially expanding continuously since
larval settlement (ANOVA, \(P < 0.0001 \)).

The regression of \(\pi_k \) vs. \(S_k / n \) (Fig. 6C) for the eastern
population had a slope of 1.07 ± 0.11 SE (\(F_{1,14} = 95.47,
P < 0.0001 \), adj. \(R^2 = 0.86 \)) and was significantly differ-
ent from the value expected (1:1 relationship of \(\pi_k \) vs.
\(S_k / \sum_{i=1}^{n-1} (1/i) \)) (Fig. 6D) if genet size were approxi-
amately constant over time with continuous ramet turn-
over (ANOVA, \(P < 0.01 \)). The regression of \(\pi_k \) vs.
\(S_k / \sum_{i=1}^{n-1} (1/i) \) for the eastern population had a slope of
0.82 ± 0.11 SE (\(F_{1,14} = 54.37, P < 0.0001 \), adj. \(R^2 = 0.78 \))
and was not significantly different from the value
expected (1:1 relationship of \(\pi_k \) vs. \(S_k / n \)) if the genet
had been spatially expanding continuously since larval
settlement (ANOVA, \(P = 0.17 \)).

Microsatellite divergence estimate of age

Estimated age calculations in the western Caribbean
reefs ranged from 30 to 838 years old (y/o) from the
maximum mutation rate and 236 to 6500 y/o from the
minimum mutation rate. Both the youngest genet and
the oldest genet were from reefs in Florida (Elbow and
Looe Key; Table 4). Genets in the eastern Caribbean
were from 76–627 y/o to 590–4865 y/o. An age

![Fig. 6](https://example.com/figure6.png) A comparison of two growth models
for the western (panels A and B) and
eastern (panels C and D) Caribbean. The
western Caribbean population included
Florida, Bahamas, Panama and Belize. The
eastern Caribbean population included
Curacao, US Virgin Islands (USVI) and St.
Vincent and the Grenadines (SVG).
Panel (A, C): In a constant population
model with continuous ramet turnover,
the slope of \(\pi_k \) vs. \(S_k / \sum_{i=1}^{n-1} (1/i) \) would exhibit a 1:1 relationship (dotted line).
Panel (B, D): In a population that is grow-
ing in size, the slope of \(\pi_k \) vs. \(S_k / n \) should
exhibit a 1:1 relationship (dotted line). See
text for statistical analysis.
<table>
<thead>
<tr>
<th>Region</th>
<th>Reef</th>
<th>Clonal ID</th>
<th>N</th>
<th>(\pi_k)</th>
<th>Oldest age (years)</th>
<th>Youngest age (years)</th>
<th>Within a 5% CI around growth model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bahamas</td>
<td>Black Bough P1100</td>
<td>5</td>
<td>0.000</td>
<td><254</td>
<td><30</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BockCay P1106</td>
<td>10</td>
<td>0.080</td>
<td>1397</td>
<td>167</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P1110</td>
<td>5</td>
<td>0.160</td>
<td>2794</td>
<td>335</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Charlies Beach P1089</td>
<td>15</td>
<td>0.053</td>
<td>931</td>
<td>112</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Great Iguana P1042</td>
<td>11</td>
<td>0.145</td>
<td>2540</td>
<td>304</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P1043</td>
<td>7</td>
<td>0.267</td>
<td>4657</td>
<td>558</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Halls Pond P1130</td>
<td>6</td>
<td>0.173</td>
<td>3027</td>
<td>363</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Little Darby P1112</td>
<td>12</td>
<td>0.067</td>
<td>1164</td>
<td>139</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Middle Beach P1079</td>
<td>9</td>
<td>0.100</td>
<td>1746</td>
<td>209</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P1080</td>
<td>5</td>
<td>0.120</td>
<td>2095</td>
<td>251</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nairn Cay P2565</td>
<td>6</td>
<td>0.000</td>
<td><254</td>
<td><30</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Perry Shallow P1073</td>
<td>7</td>
<td>0.057</td>
<td>998</td>
<td>120</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P1075</td>
<td>6</td>
<td>0.067</td>
<td>1164</td>
<td>139</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P2475</td>
<td>5</td>
<td>0.080</td>
<td>1397</td>
<td>167</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P1148</td>
<td>6</td>
<td>0.293</td>
<td>5122</td>
<td>613</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P1123</td>
<td>7</td>
<td>0.057</td>
<td>998</td>
<td>120</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P1122</td>
<td>9</td>
<td>0.000</td>
<td><254</td>
<td><30</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Belize</td>
<td>GSTF12 P2276</td>
<td>5</td>
<td>0.120</td>
<td>2095</td>
<td>251</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Curacao</td>
<td>Blue Bay P2161</td>
<td>5</td>
<td>0.080</td>
<td>1397</td>
<td>167</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P1200</td>
<td>11</td>
<td>0.036</td>
<td>635</td>
<td>76</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>East Point P1258</td>
<td>5</td>
<td>0.080</td>
<td>1397</td>
<td>167</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P1244</td>
<td>11</td>
<td>0.073</td>
<td>1270</td>
<td>152</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sea Aquarium P1199</td>
<td>7</td>
<td>0.000</td>
<td><254</td>
<td><30</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P1232</td>
<td>5</td>
<td>0.000</td>
<td><254</td>
<td><30</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P2194</td>
<td>11</td>
<td>0.109</td>
<td>1905</td>
<td>228</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Florida</td>
<td>Boomerang P1040</td>
<td>10</td>
<td>0.040</td>
<td>698</td>
<td>84</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carryfort P2115</td>
<td>17</td>
<td>0.092</td>
<td>1609</td>
<td>193</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P2118</td>
<td>41</td>
<td>0.137</td>
<td>2385</td>
<td>286</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P2121</td>
<td>24</td>
<td>0.049</td>
<td>848</td>
<td>102</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P2591</td>
<td>11</td>
<td>0.102</td>
<td>1778</td>
<td>213</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elbow P1028</td>
<td>55</td>
<td>0.015</td>
<td>254</td>
<td>30</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P1029</td>
<td>6</td>
<td>0.067</td>
<td>1164</td>
<td>139</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P1030</td>
<td>7</td>
<td>0.000</td>
<td><254</td>
<td><30</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P1033</td>
<td>7</td>
<td>0.152</td>
<td>2661</td>
<td>319</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P1032</td>
<td>30</td>
<td>0.256</td>
<td>4469</td>
<td>535</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P2122</td>
<td>8</td>
<td>0.136</td>
<td>2370</td>
<td>284</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P2123</td>
<td>16</td>
<td>0.265</td>
<td>4628</td>
<td>554</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P2126</td>
<td>27</td>
<td>0.135</td>
<td>2357</td>
<td>282</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>French P2539</td>
<td>6</td>
<td>0.067</td>
<td>1164</td>
<td>139</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P2538</td>
<td>20</td>
<td>0.261</td>
<td>4559</td>
<td>546</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P2128</td>
<td>54</td>
<td>0.126</td>
<td>2206</td>
<td>264</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P2564</td>
<td>24</td>
<td>0.178</td>
<td>3113</td>
<td>373</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grecian Rocks P2582</td>
<td>19</td>
<td>0.042</td>
<td>735</td>
<td>88</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P1034</td>
<td>14</td>
<td>0.057</td>
<td>998</td>
<td>120</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Horseshoe P1000</td>
<td>25</td>
<td>0.113</td>
<td>1967</td>
<td>236</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P2559</td>
<td>7</td>
<td>0.114</td>
<td>1996</td>
<td>239</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Key Largo DR P2132</td>
<td>14</td>
<td>0.202</td>
<td>3531</td>
<td>423</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P2134</td>
<td>13</td>
<td>0.254</td>
<td>4433</td>
<td>531</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P2138</td>
<td>14</td>
<td>0.110</td>
<td>1919</td>
<td>230</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P2139</td>
<td>6</td>
<td>0.133</td>
<td>2328</td>
<td>279</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P2597</td>
<td>5</td>
<td>0.200</td>
<td>3492</td>
<td>418</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Little Grecian P1026</td>
<td>5</td>
<td>0.080</td>
<td>1397</td>
<td>167</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P1001</td>
<td>24</td>
<td>0.032</td>
<td>557</td>
<td>67</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Looe Key P2427</td>
<td>28</td>
<td>0.052</td>
<td>915</td>
<td>110</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P2429</td>
<td>31</td>
<td>0.401</td>
<td>7000</td>
<td>838</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>
comparison between the eastern and western populations, including only genets with somatic mutations (west $n = 61$, east $n = 15$) yielded no significant differences (Kruskal–Wallis test, $P > 0.05$).

Discussion

Determination of genet age distribution in coral populations is important for understanding demographic changes in response to environmental perturbation and ultimately for understanding the evolutionary potential of these foundation species. *A. palmata*, the now endangered but previously dominant shallow reef-builder in the Caribbean, lends itself to somatic mutation analyses because of the importance of asexual reproduction via fragmentation resulting in genets with many members. Here, we show that some *A. palmata* genets are apparently of substantial age (Table 4). This was surprising, as previously only cold-water corals were found to be >1000 y/o (Table 1).

The Quaternary fossil record of *A. palmata* assemblages suggests that their habitat tolerances and preferences have remained relatively constant through time and space (Goreau 1959; Shinn 1963; Gischler 2015). Consequently, the distribution of *A. palmata* on shallow-water reefs has persisted through repeated glacial–interglacial cycles. Thus, at scales from decades to millennia, the persistence of *A. palmata* and the assemblages they comprise was enabled by their capacity to incrementally track favourable environments that have shifted spatially over
time (Precht and Aronson personal correspondence). These geological data point to the possibility of potentially millennial-age (or older) genets within modern-day populations of A. palmata.

We stress that absolute genet ages derived from somatic mutations as presented here have to be interpreted cautiously. Because direct measurements of microsatellite mutation rates in corals are not available and probably will not be for some time, we used other evidence to bracket minimum and maximum mutation rates. We assigned the highest mutation rate to the genet with the smallest microsatellite divergence rate among clone members and measured the growth rate of the largest colony. Growth rates of A. palmata can vary with season, latitude and reef location, and the measured linear extension rate of 4.44 cm/year of this colony was somewhat slower than published growth rate measurements of 6–9 cm/year from Florida and across the Caribbean (Gladfelter et al. 1978; Litman 2000; Bak et al. 2009). We set the minimum mutation rate to the genet with the largest microsatellite divergence rate among clone members and asked how long this genet could have existed in this location (Looe Key, Florida).

By turning to the published fossil record, we ascertained that A. palmata colonies at this location could not have been more than 6500 years old (Lidz et al. 1985). While it is perhaps unlikely that this genet is 6500 years old because A. palmata presence at this location may not have been continuous over this time frame, it is a maximal estimate. The resulting mutation rates (1.195×10^-4 to 1.542×10^-5 per locus per year) fall within reported microsatellite mutation rates from 10^-2 to 10^-6 per sexual generation (Kruglyak et al. 1998; Shimoda et al. 1999; Ellegren 2000; Hoekert et al. 2002; O’Connell & Ritland 2004; Peery et al. 2012) when adjusted to generational times of acroporids (4–8 years; Wallace 1985). An analysis of environmental markers in extant A. palmata skeletal could substantiate genet age estimates (however, the oldest portion of the genet may no longer exist).

Despite the uncertainties surrounding absolute genet age determination, relative genet age comparisons across the range of A. palmata should still be valid and are presented here for the first time.

Range-edge populations and dominance of asexual reproduction

Sessile organisms capable of asexual reproduction are often largely clonal at the edge of the species’ range, both in terrestrial and marine ecosystems (Eckert 2002; Baums 2008). Populations at the range margins of the marine angiosperm Zostera marina had clonal richness values of <0.2 and sexual reproduction was rare or absent (Reusch & Boström 2011). The marginal A. palmata population of Florida averaged 3.7 UMs per MLG, whereas eastern, lower latitude populations such as Bonaire, Curacao and USVI ranged from 1.2 to 1.3 UMs per MLG, n = 1387 (Table 3). This would mean that the Florida genets are older. Nevertheless, when considering only the large clonal stands the ages were not significantly different between the eastern and western populations (Table 4) suggesting a more or less similar historical presence of A. palmata in both populations but a higher frequency of sexual renewal in the East.

Mosaicism due to somatic copy number variations

At first glance, the appearance of three alleles per locus in A. palmata MLGs is puzzling. One explanation is gene or genome duplication (Wang et al. 2009; Richards & Oppen 2012). However, several lines of evidence argue against this interpretation. Preliminary assembly of two lanes of genomic sequencing data (Illumina) showed no evidence of genome duplication (I. Baums personal observations). Additionally, a chromosomal spread analysis of A. palmata larvae revealed a count of n = 24 (Fig. S5, Supporting information), a diploid state. The basic scleractinian chromosome number is x = 14 and x = 12 (Kenyon 1997). Inherited, duplicated genomic regions are also unlikely. In the latter case, all five microsatellite loci would have to be located in duplicated regions as all five loci show triallelic genotypes, albeit usually only one loc was mutated in any given sample: for genets with n ≥ 5 ramets, 15.56% had zero mutated loci, 58.89% had one mutated locus, 20% had two mutated loci and 5.56% had three mutated loci. Four of the five loci amplify a similar range of allele sizes in the Caribbean sister species, A. cervicornis. Fossil records date back 6.6 (Budd & Johnson 1999) and 2.6–3.6 (McNeill et al. 1997) million years, respectively, for A. cervicornis and A. palmata. Thus, the duplication events would have to have occurred before the speciation event because triallelic genotypes were found in both species across the entire Caribbean range. Such duplicated genomic regions would have been mutating separately for several million years making it unlikely that the majority of mutations are just one mutation step away as observed here.

Genomic instability is a mechanism of ageing with somatic copy number variations (CNV) prevalent in many human cancers (Shlien & Malkin 2009) and somatic CNVs increase with age in human blood cell genomes (Forsberg et al. 2012). We posit that A. palmata genomes accumulate somatic duplications with age, resulting in multiple copies of the microsatellite loci available for replication slippage (Fig. 7). This led to some ramets having up to four alleles at a single locus.
Recovery of triallelic genotypes was robust to repeated DNA extractions, and repeated PCRs, and has been observed in other coral species (Wang et al. 2009) and the marine angiosperm Zostera marina (Reusch & Boström 2011). Baums et al. (2005a) found triploid larvae in some experimental crosses, ranging from 7% to 36% of the larvae genotyped. Larvae did survive to 90 h post fertilization but it is unknown if they would settle and grow into reproductive adults. The most likely explanation for the triploid status was having a second maternal allele, either due to retention of a polar body, self-fertilization or mitotic parthenogenesis. Multiple alleles (3–5) were detected in 15% of Pacific Acroporids at a single locus due to inherited gene duplication; in this study, all alleles in the example chromatogram were greater than a one-mutation-step difference (130, 140, 150, 162 bp, Richards & Oppen 2012). Interestingly, predominately sexually reproducing coral species on the Great Barrier Reef show somatic mutation in the form of two alleles per locus (presumably generated by a single slippage event without duplication) rather than three alleles (Schweinsberg et al. 2015). This leads us to hypothesize that highly fragmenting coral species such as A. palmata accumulate somatic CNVs over the long lifetime of the genet.

Independent evidence for or against somatic CNV would have to come from fluorescent in situ hybridization (FISH; Langersafer et al. 1982) or through controlled crosses of gametes from a triallelic genet and a genet without mutations within the five microsatellite loci, if there is not a sequestered germline.

A triploid (or tetraploid) state at a microsatellite locus could also stem from the mutation of cells that are able to proliferate, such as stem-like cells (Reyes-Bermudez & Miller 2009), resulting in two (or more) diploid cell lineages found throughout the colony.

Mosaicism vs. chimerism

Genetic diversity within a colony could stem from the fusion of two or more larvae or juvenile corals, producing a chimera (Fig. 1). Such fusion in early life stages has been observed in scleractinian corals and is generally attributed to an immature immune system that is not yet able to distinguish between self and nonself (Frank et al. 1997; Permata & Hidaka 2005; Puill-Stephan et al. 2009). However, the prevalence of chimerism in adult colonies in the genus Acropora is generally low (2–5%; Schweinsberg et al. 2015). Retrieval of genotypes that vary at several loci among branches from one colony may indicate chimerism (Fig. 1). A colony was classified as a chimera if it differed by more than 60% in its major cluster assignment probability from other members of its genet as defined by Schweinsberg et al. (2015). Only 0.2% of samples from the 90 genets (n = 1296) were classified as possible chimeras, thus making mosaicism the more likely explanation for most of the observed intracolony genetic variation.

Evolutionary and ecological consequences of genet longevity

The presence of large, potentially centennial-aged genets within a population begs questions with regard to their history as well as their adaptive potential over the coming decades of rapid environmental change. It is
likely that the environmental conditions in most shallow coastal habitats over the lifespan of these very old genets were quite different from today, which implies (i) that these old genets possess a great degree of plasticity enabling them to persist throughout these environmental variations (Barshis et al. 2013) and/or (ii) that they have in fact ‘migrated’ among nearby coastal habitats over the centuries. For example, it is possible that our current observation of a very old clone is in a distinct location from where it originally recruited with fragments ‘migrating’ upslope thereby tracking slow holocene sea level change (Gischler 2015).

Alternatively, the General-Purpose Genotype model (Baker 1965) explains the ubiquity of clonal organisms by their ability to retain the most competent genotypes over time, favouring the absence of sexual reproduction once an optimal genotype is found. For example, Van Doninck et al. (2002) showed much higher ecological tolerances of a ubiquitous asexual ostracod in comparison with additional species that were asexual and narrowly distributed or that had mixed reproductive modes. If A. palmata genets have persisted over hundreds to thousands of years, it implies persistence through substantial environmental changes and possibly gives hope that they can survive additional anticipated climate change. The overall recent declines of A. palmata including declines of certain moderate-sized clones in particular (Banks et al. 2010) suggest there is a limit to this tolerance, which may be exceeded soon.

However, A. palmata is not entirely asexual and there is also the possibility that a preponderance of large, old genets is not necessarily adaptive. Potts (1984) suggested that because of corals’ extreme longevity, many species (or populations) have not had the opportunity, as current coastal habitats became habitable, to complete adequate sexual generations to reach evolutionary equilibrium. Because fecundity of corals increases with genet size (senescence notwithstanding), there may be a tendency for large old clones to dominate the gene pool and diminish the chances for newer genets, possibly even those better adapted to current environmental conditions, to expand. If this is true, it implies that the presence of large old clones (possibly of general-purpose genotypes) may impair the rapid adaptation needed for persistence under climate change.

The occurrence of somatic mutations raises the question of whether they can be the target of selection and rapid adaptation. Mosaicism is thought to be favoured in plants because it offers an advantage in the Red Queen race against pests and parasites by increasing the standing genetic diversity that prevents the evolution of specific metabolic pathways that could be used to overcome the defences of the plant (Valen 1974; Gill et al. 1995). Mutations in the soma are available for immediate selection pressure from the environment as they compete with other wild-type and mutated lineages within the organism. The selection of somatic cell lineages, termed intra-organismal selection (also called somatic, diplontic or cell-lineage selection; see Buss 1983; Hughes 1989; Otto & Hastings 1998; Clarke 2011) may have the potential for rapid evolutionary change in a modular organism by allowing within-organism gene frequency changes within a single generation (Klekowksi & Kazarinova-Fukhansky 1984). Through the displacement of the wild-type lineage, the mutation of regenerating cells can be considered evolution as they are potentially heritable in clonal Cnidaria through both sexual and asexual routes. Alternatively, the coexistence of multiples lineages within an organism may result in intra-organismal competition or cell parasitism leading to the decrease of overall fitness (Michod & Roze 1999; Pineda-Krch & Lehtilä 2004). A theoretical population model suggested that strong negative selection against intra-individual mutations keeps changes of allele frequencies due to somatic mutations very low (Orive 2001).

Currently, empirical confirmation of somatic selection is limited. However, there are many organisms that have been evolving in the absence of sex including rotifers (Welch & Meselson 2000), Artemia (Perez et al. 1994) and salamanders in the genus Ambystoma (Hedges et al. 1992) [see Van Oppen et al. (2011) for a review on somatic mutations as fuel for adaptation in invertebrates]. Somatic selection has also been demonstrated experimentally in plants (Breese et al. 1965; Whitham & Slobodchikoff 1981; Monro & Poore 2009). Somatic mutations may be widespread in corals (Levitan et al. 2011; Schweinsberg et al. 2015) and within mosaic Acropora hyacinthus colonies it was shown that transfer of intercolonial genetic variation to the next generation via gametes is possible (Schweinsberg et al. 2014) albeit this was not the case in Orbicella (Barfield et al. 2016).

The ability of the coral host to respond to a changing environment occurs not only through genetic adaptation but also through acclimatization by varying phenotypic responses. It has recently become apparent that some environmentally induced nongenetic or epigenetic changes are also heritable through a process known as transgenerational acclimatization (van Oppen et al. 2015). Epigenetic changes include histone modifications, DNA methylation, chromatin remodelling and gene regulatory mechanisms involving small noncoding RNAs (Danchin et al. 2011). A recent study in the clonal tree poplar showed the persistent influence of geographic origin on the ability to respond to stress within a common garden experiment. The older the clone (longer clones of the same genet lived in different environmental conditions), the more divergent the transcriptomic
response was to drought and the greater the variation in genome methylation patterns (Raj et al. 2011). Although not directly linked to epigenetic changes, the pacific coral Acropora hyacinthus (cryptic species E) was able to acclimatize to new microenvironments by increasing bleaching resistance, as measured through transcriptomic responses and chlorophyll A changes, without altering their abundances of symbiont type (Palumbi et al. 2014). This imprinted ‘memory’ of past stress responses could have profound implications for asexually reproducing corals in that ramets distributed across a reef could have divergent epigenetic ‘memories’ due to varying environmental conditions such as water flow, light and pathogen exposure. In addition, epigenetic changes along with somatic mutations have the ability to be passed on to the next generation in organisms without segregated germlines.

The current paucity of clonal age estimates impairs our understanding of the ecology and evolution of marine foundation fauna. These estimates are difficult to come by because size and age are not related in colonial, asexually reproducing organisms. Significant asexual colony reproduction occurs in at least nine coral genera, and thus, the decoupling of size and genet age is a widespread phenomenon in corals (Table S1, Supporting information). Alternative methods to estimating genet age include the use of somatic mutations but without direct mutation rate measurements, the uncertainty of the age estimates is considerable. Regardless, when applied to a fragmenting Caribbean coral, the results point towards genet ages that rival those of the most ancient organisms on earth alive today. This raises questions about their adaptive potential to a rapidly changing climate. Does their past ability to survive environmental change predict future success? The answer will come from experimental studies combined with demographic and theoretical models.

Acknowledgements

Field collection in Mexico was funded by the Consejo Nacional de Ciencias y Tecnología grant number 153260 (to ATB). Funding was provided by the National Science Foundation grants OCE 0928764 and OCE-1516763, and NOAA-National Marine Fisheries Service to IB. Samples were obtained under permit numbers AN001, US107A, 0385, MH-HR-010-MEX, 3235 and 12US784243/g.

References

© 2016 John Wiley & Sons Ltd

M.D. and I.B. designed the study and wrote the manuscript with key input from M.M. and W.P. M.D. analysed and interpreted the data. Funding was provided and samples were collected by I.B. and the Caribbean Acropora Research Group.

Data accessibility

Multilocus genotypes are available at Dryad: http://dx.doi.org/10.5061/dryad.f6600.

Appendix

Caribbean Acropora Research Group

Lisa Carne, Fragments of Hope, Placencia Village, Stann Creek District, Belize, isas@btl.net; Tyler B. Smith, Center for Marine and Environmental Studies, University of the Virgin Islands, St. Thomas, VI 00802, USA, tsmith@uvi.edu; Anastazia T. Banaszak, Unidad Académica de Sistemas Arrecifales, Puerto Morelos, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, banaszak@cmarl.unam.mx; Lisa Greer, Washington and Lee University, Lexington, VA 24450, USA, greerl@wlu.edu; Adele Irwin, Washington and Lee University, Lexington, VA 24450, USA, irwin15@mail.wlu.edu; Nicole D. Fogarty, Department of Marine and Environmental Sciences Halmos College of Natural Science and Oceanography Nova Southeastern University, 8000 N. Ocean Drive, Dania Beach, FL 33004-3078, USA, nicole.fogarty@nova.edu; Dana E. Williams, Cooperative Institute for Marine and Atmospheric Studies, University of Miami, 4600 Rickenbacker Causeway. Miami FL, 33149, USA; and Southeast Fisheries Science Center, National Marine Fisheries Service, 75 Virginia Beach Dr., Miami, FL 33149, USA, dana.williams@noaa.gov

Supporting information

Additional supporting information may be found in the online version of this article.

Table S1 Contribution of asexual reproduction to local population structure is wide-spread in corals.

Table S2 Microsatellite allele calls for genet P2429 collected from Looe Key Florida on 14 July 2009.

Table S3 Eleven Acropora palmata colonies from Florida were sampled and genotyped repeatedly over space and time.

Fig. S1 Photo time series illustrating how a fragment (red box) of Acropora palmata reattaches and grows into a new colony.

Fig. S2 Histogram of pairwise differences (Nei’s genetic distance) for all 3352 Acropora palmata samples.

Fig. S3 Example electropherograms of locus 166 from five Acropora palmata samples of genet P2429 collected from Looe Key, Florida.

Fig. S4 Assignment of ramets to genets using Bayesian clustering analysis in Acropora palmata.

Fig. S5 Somatic chromosome counts (n = 24) for Acropora palmata based on metaphase spreads of colchicine-treated embryonic cells.